
2008-01-1221 

Using Multiple Processors for Monte Carlo Analysis of System 
Models  

Amory Wakefield  
The MathWorks, Inc. 

Copyright © 2008 The MathWorks, Inc.

ABSTRACT 

Model-Based Design has become a standard in the 
automotive industry. In addition to the well-documented 
advantages that come from modeling control algorithms, 
[1,2,3,4] modeling plants can lead to more robust 
designs. Plant modeling enables engineers to test a 
controller with multiple plant parameters, and to simulate 
nominal or ideal values. Modeling variable physical 
parameters provides a better representation of what can 
be expected in production. Monte Carlo analysis is a 
standard method of simulating variability that occurs in 
real physical parameters. Automotive companies use 
Monte Carlo testing to ensure high quality, robust 
designs. Due to time and resource constraints, 
engineers often examine only a limited number of key 
parameters rather than an entire set. This leaves the 
design vulnerable to problems caused by missing the full 
potential impact of parameters that were unvaried during 
testing. New high-performance computing tools and 
multiprocessor machines have eliminated the time and 
resource limitations in many cases by providing the 
processing power needed to vary large numbers of 
parameters in complex dynamic models. This paper 
presents new methods for distributing Monte Carlo 
analyses of system models across multiple machines. 
These methods reduce testing time and enable more 
complete analyses, ensuring better quality when designs 
go into production.   
 
INTRODUCTION 

Model-Based Design has become a standard for control 
design. In the automotive industry, using Model-Based 
Design offers many benefits, including improving the 
resulting design, shortening development time, reducing 
costs, and reducing design errors [1,2,3,4]. Model-Based 
Design enables engineers to gain insight into system 
behavior without building physical prototypes of the 
system, which allows this to happen early in the 
development process.  

One common technique for evaluating designs is Monte 
Carlo analysis. Monte Carlo techniques require 
simulating the model many times using randomized 

inputs and parameters. Running the model many times 
on different test cases provides engineers with insight 
they can use to refine and improve their design, as well 
as to verify the design meets the system requirements. 

Each of these runs, however, may take hours to 
complete.  To meet the increasing demands of faster 
product development timelines, speeding up this 
analysis is critical. The high quality expectations of the 
automotive market make it impossible to reduce testing 
time by simply reducing the number of testing scenarios.  
Finding ways to reduce testing time for all required 
scenarios is the best alternative.  

This paper discusses new techniques to reduce the time 
needed to complete Monte Carlo testing using software 
tools for Model-Based Design, high-performance 
computing (HPC) clusters, and multiprocessor 
machines. Examples and benchmarks will be discussed 
that demonstrate the typical increase in performance 
that can be achieved. 

SYSTEM MODELING 

The creation of a system model is at the heart of Model-
Based Design. A detailed control algorithm model built 
using commercial-off-the-shelf (COTS) software [5,6] 
can be simulated in an open-loop manner that provides 
many, well-documented benefits [2,3]. To further 
increase the value of the model, engineers can build a 
plant model, and test the control algorithm in a closed-
loop manner.   

System models are often created and analyzed under 
the assumption that the model inputs, defining 
parameters (constants), and operating environment are 
known precisely. Real-world systems, however, operate 
under conditions that are uncertain, and failure to 
account for that uncertainty can lead to inaccurate 
predictions of system behavior. 

By modeling the whole system, engineers can test 
multiple scenarios in a simulation environment, including 
some that may be difficult to reproduce on real systems 
without damaging the system being tested. For example, 



engineers can force system sensors into failure states to 
ensure the algorithm handles the errors correctly, or they 
can simulate a system at extreme temperatures. For this 
testing to be representative of the real system, an 
accurate plant model is needed.   

Another advantage of testing system models, instead of 
prototypes in a lab, is the elimination of the effort and 
cost needed to build prototypes, when they are even 
available. Automotive suppliers often develop plant 
components and sensors in parallel with the controller 
design.  Parts may not always be available for testing 
when the control designer is ready to test them. In these 
cases, developing a plant model that can be simulated 
with the controller model is necessary to achieve the 
benefits of system testing in simulation. 

PLANT MODELS 

Evaluating plant model accuracy and accounting for 
uncertain model parameters is an important part of the 
system modeling process.  It provides insight into the 
system’s operation and helps ensure that the model is 
accurate across a range of operating values [7]. One 
way to determine the accuracy of a model is by 
comparing test data to simulation data. Automating this 
comparison using COTS software [8] can simplify this 
step of system modeling.  

Comparing test and simulation data can validate a plant 
model for a set of ideal or nominal parameters.  Plants, 
however, are built on production lines and almost always 
contain physical variability.  They are also operated in 
variable conditions, such as temperature, humidity, and 
electrical noise.  The ability to simulate a system across 
multiple scenarios can greatly increase confidence in a 
model.   

MONTE CARLO TECHNIQUES 

Monte Carlo methods are useful techniques for 
simulating physical variability and electrical noise, 
because these variables can be modeled using 
Gaussian and other probability distributions. The inputs 
to these statistical models can be obtained from 
manufacturers’ specifications of physical parts, lab 
measurements, test specifications, or historical data.  

Whether conducting manual random testing or applying 
sophisticated Monte Carlo techniques, the more random 
values tested, the more valuable the testing is at 
predicting real performance.  In practice, this can mean 
testing thousands of scenarios to cover a design space.  
One technique used to reduce the number of test cases 
needed is Design of Experiments.  While this can greatly 
reduce the number of tests needed, running 1000 
instead of 5000 scenarios can still take a long time, 
particularly as the fidelity of a model increases.   

Reducing the time needed for Monte Carlo analysis can 
enable engineers to fully test designs in a modeling 
environment without sacrificing product schedules.  

That, in turn, leads to higher quality designs and fewer 
problems when the design goes into production.  

HIGH PERFORMANCE COMPUTING 

With the increased availability of multicore and 
multiprocessor computers, and the growth of computing 
clusters, many organizations already have vast CPU 
processing power installed on site. Though the 
processing power is available, running an individual 
engineer’s simulations on the cluster or on multiple 
processors is not always straightforward, particularly 
from within a COTS simulation software tool. In fact, the 
difficulty in setting up distributed applications is still a 
barrier to tapping the processing power in one computer, 
let alone a cluster of perhaps hundreds. Yet, taking 
advantage of these computing resources is a critical 
step to increasing the number of Monte Carlo 
simulations that can be reasonably run.  

Running simulations in a HPC environment is one 
approach that was once prohibitively expensive due to 
the cost of installing and maintaining sufficient 
computing power. HPC was available mainly to 
government agencies and large research laboratories, 
because only these groups had the means to purchase 
supercomputers. Today, most supercomputers have 
been replaced by COTS computer clusters that provide 
affordable, high-performance, distributed computing 
environments. The number of available clusters is 
growing rapidly. Last year, HPC hardware revenue hit an 
all-time high of $10 billion and revenue has been 
growing more than 20% over the last four years [9]. 

DISTRIBUTING SIMULATIONS 

Certain computing problems are classified as distributed 
or coarse-grained because they can be segmented 
easily to run on several nodes without communication, 
shared data, or synchronization points between the 
nodes. Monte Carlo simulations fall into this category, 
and thus are an obvious candidate to run on computing 
clusters. 

Some organizations have found that the time needed to 
setup and maintain their COTS simulation software on a 
cluster substantially reduces the time savings provided 
by the additional computing power [10]. In these 
situations, integration between the simulation software 
and the HPC cluster is needed to maximize the 
investment in computing power.  

EXECUTABLES 

One way to run simulations on a cluster without installing 
COTS software on every node is to compile the model 
into an executable [11]. For example, one can generate 
ANSI/ISO C/C++ code from the model, and then compile 
this code into an executable. The separate executable 
can be executed from a command line, thus requiring 
scripts to provide input data to the executable and 
handle its output data.  



While this technique is very useful for accelerating 
simulations, to use it to run Monte Carlo analyses, the 
engineer must write scripts that set up parameter 
variations and gather results from the multiple 
executables into a usable format. If the engineer is using 
a remote cluster, additional scripting may be needed for 
communication with a scheduler and job creation. This 
can be tedious and often requires help from a cluster 
administrator to customize a particular simulation setup. 
The technique described below and used throughout the 
remainder of the paper addresses this barrier to using 
HPC resources for Monte Carlo simulations.  

DISTRIBUTED COMPUTING TOOLS 

An alternative to using executables is to use COTS tools 
that provide an interface to the computer clusters.  For 
example, with SystemTest™ [8] and Distributed 
Computing Toolbox™ [13] engineers can use a 
Graphical User Interface (GUI) to vary a set of 
parameters in a Simulink® model for Monte Carlo testing 
and then define it as a job to be run on multiple 
processors. With these COTS solutions, engineers can 
launch the job by simply checking a box within the GUI.  
An engineer using SystemTest can distribute complete 
Simulink models for execution in a cluster or in a 
multicore or multiprocessor computer without writing any 
lines of code [8,12]. 

Additional time can be saved if the COTS simulation 
tools are integrated with HPC schedules.  For example, 
a system or cluster administrator can setup a 
configuration file that contains information about the 
particular scheduler in the cluster and the shared 
directories that may be needed.  After the file is made 
available to anyone who wants to use the cluster, it can 
be used by programs such as the MATLAB® Distributed 
Computing Engine [12] to schedule and execute jobs on 
the available workers.  This technique is examined in the 
following DC motor model example. 

DC MOTOR MODEL EXAMPLE 

A DC motor model was previously described by Kozola 
and Doherty [14]. We use a similar model, shown in 
Figure 1, as an example with a Monte Carlo test built 
around it.  

The DC motor model has two inputs - the supply voltage 
(Vs) and the inertial load (Jd) - and six adjustable model 
parameters, as shown in Figure 2. These parameters, 
which were defined based upon manufacturer 
specifications for the motor, are assumed to be constant 
in the model. The output characteristics of interest are 
the rise time and the steady-state angular velocity.  

Figure 1. DC motor model.  
 
MONTE CARLO SIMULATIONS 

We set up a test to evaluate performance that engineers 
might expect to see in a real DC motor due to 
manufacturing variations. Iterations of the model were 
run with 1000 different sets of system parameters.  
These parameters were generated using normal 
(Gaussian) and uniform probability distributions.  
Additionally, the input voltage signal was varied across a 
range of expected operational values.  

Figure 2. Physical parameters of the DC motor model. 

We used SystemTest to read experimental test data 
from an Excel® file. Gathered during tests of real DC 
motors across a representative set of operating 
conditions, these experimental test data provide real-
world response data. These data were used to 
determine the model’s accuracy when predicting 
performance variability of physical motors. A Monte 
Carlo simulation was then performed, running the model 
repeatedly with 1000 random combinations of parameter 
values. 



We performed a curve fit on the experimental test data, 
to determine the output characteristics for the operating 
conditions used in the Monte Carlo testing. We 
evaluated the model’s accuracy for predicting 
performance variability by comparing the expected 
output characteristics derived from the experimental test 
data to the output characteristics produced from the 
Monte Carlo simulations. All of this was automated in a 
SystemTest TEST-file.   

In this paper, we are not as concerned with the accuracy 
of our model as we are with the time it takes to perform 
the Monte Carlo tests, compare each output to 
experimental data, and report the results.  We first ran 
the model on a single processor, which took almost two 
hours (6600 seconds).  We then ran the same Monte 
Carlo test using a computing cluster. 

BENCHMARKING ON A COMPUTING CLUSTER 

The number of workers used for a specific test run was 
selected using the graphical configuration tool provided 
to manage worker configurations. Each 1000-iteration 
test was identical; only the number of workers used 
varied from run to run. Each scenario was run four times 
and the times were averaged to obtain the results shown 
in Figure 3.  

  Time Needed to Run 1000 Iterations 
of DC Motor Model on Multiple Workers
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Figure 3. Graph showing the time savings when running Monte Carlo 
example on multiple processors. 

The dedicated cluster of machines used for this example 
consists of 8 machines with Quad-Core AMD Opteron™ 
processors running at 2.4 GHz. The cluster is 
homogenous, meaning that each of the quad-core 
machines ran the Debian 4.0 Linux distribution, shared 
4GB of RAM and communicated with the other 
machines using a Gigabit Ethernet network.  

As shown in Figure 3, the speed improvement is not 
precisely linearly dependent on the number of workers. 
This is because distributing the tasks adds its own 
overhead, which includes copying over the files from the 

client machine to each machine on the cluster and 
transmitting input and output data between the workers 
and the job manager and the network latency. In 
general, total simulation time should be significantly 
longer than the time needed for these overhead tasks to 
achieve speed benefits from distributing tasks. 

CONCLUSION 

An accurate, production-representative plant model that 
can be simulated in the same environment as an 
embedded controller model can significantly increase 
the quality of automotive systems. This paper has 
presented some of the hurdles that must be overcome to 
create and validate of accurate system models.  We 
presented a concrete example of one technique, Monte 
Carlo testing, to validate plant models.   

One drawback to Monte Carlo testing is the number of 
simulations needed to create meaningful data and the 
time needed to complete those simulations. Often, 
product delivery schedules do not allow enough time to 
perform more complete testing in simulation before 
building hardware.   

One solution to this issue is to reduce the time needed 
to run multiple simulation iterations. With the rapid 
growth of the HPC market and increasing availability of 
computing resources to individual engineers, an 
attractive option is to take advantage of the multicore 
machines and computing clusters that are installed in 
many organizations today. We presented tools from The 
MathWorks that enable engineers to make use of these 
resources without needing to redesign tests or write 
additional scripts.   

The benchmarking clearly demonstrated that significant 
time savings is achievable using existing tests, even with 
a modestly sized computing cluster. Engineers are no 
longer forced to choose between meeting a production 
schedule or fully testing a design. Using a combination 
of distributed computing tools, SystemTest and HPC 
resources, engineers can simultaneously address two 
opposing demands that face the automotive industry 
today: time-to-market and quality. 
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