
2008-01-1221

Using Multiple Processors for Monte Carlo Analysis of System
Models

Amory Wakefield
The MathWorks, Inc.

Copyright © 2008 The MathWorks, Inc.

ABSTRACT

Model-Based Design has become a standard in the
automotive industry. In addition to the well-documented
advantages that come from modeling control algorithms,
[1,2,3,4] modeling plants can lead to more robust
designs. Plant modeling enables engineers to test a
controller with multiple plant parameters, and to simulate
nominal or ideal values. Modeling variable physical
parameters provides a better representation of what can
be expected in production. Monte Carlo analysis is a
standard method of simulating variability that occurs in
real physical parameters. Automotive companies use
Monte Carlo testing to ensure high quality, robust
designs. Due to time and resource constraints,
engineers often examine only a limited number of key
parameters rather than an entire set. This leaves the
design vulnerable to problems caused by missing the full
potential impact of parameters that were unvaried during
testing. New high-performance computing tools and
multiprocessor machines have eliminated the time and
resource limitations in many cases by providing the
processing power needed to vary large numbers of
parameters in complex dynamic models. This paper
presents new methods for distributing Monte Carlo
analyses of system models across multiple machines.
These methods reduce testing time and enable more
complete analyses, ensuring better quality when designs
go into production.

INTRODUCTION

Model-Based Design has become a standard for control
design. In the automotive industry, using Model-Based
Design offers many benefits, including improving the
resulting design, shortening development time, reducing
costs, and reducing design errors [1,2,3,4]. Model-Based
Design enables engineers to gain insight into system
behavior without building physical prototypes of the
system, which allows this to happen early in the
development process.

One common technique for evaluating designs is Monte
Carlo analysis. Monte Carlo techniques require
simulating the model many times using randomized

inputs and parameters. Running the model many times
on different test cases provides engineers with insight
they can use to refine and improve their design, as well
as to verify the design meets the system requirements.

Each of these runs, however, may take hours to
complete. To meet the increasing demands of faster
product development timelines, speeding up this
analysis is critical. The high quality expectations of the
automotive market make it impossible to reduce testing
time by simply reducing the number of testing scenarios.
Finding ways to reduce testing time for all required
scenarios is the best alternative.

This paper discusses new techniques to reduce the time
needed to complete Monte Carlo testing using software
tools for Model-Based Design, high-performance
computing (HPC) clusters, and multiprocessor
machines. Examples and benchmarks will be discussed
that demonstrate the typical increase in performance
that can be achieved.

SYSTEM MODELING

The creation of a system model is at the heart of Model-
Based Design. A detailed control algorithm model built
using commercial-off-the-shelf (COTS) software [5,6]
can be simulated in an open-loop manner that provides
many, well-documented benefits [2,3]. To further
increase the value of the model, engineers can build a
plant model, and test the control algorithm in a closed-
loop manner.

System models are often created and analyzed under
the assumption that the model inputs, defining
parameters (constants), and operating environment are
known precisely. Real-world systems, however, operate
under conditions that are uncertain, and failure to
account for that uncertainty can lead to inaccurate
predictions of system behavior.

By modeling the whole system, engineers can test
multiple scenarios in a simulation environment, including
some that may be difficult to reproduce on real systems
without damaging the system being tested. For example,

engineers can force system sensors into failure states to
ensure the algorithm handles the errors correctly, or they
can simulate a system at extreme temperatures. For this
testing to be representative of the real system, an
accurate plant model is needed.

Another advantage of testing system models, instead of
prototypes in a lab, is the elimination of the effort and
cost needed to build prototypes, when they are even
available. Automotive suppliers often develop plant
components and sensors in parallel with the controller
design. Parts may not always be available for testing
when the control designer is ready to test them. In these
cases, developing a plant model that can be simulated
with the controller model is necessary to achieve the
benefits of system testing in simulation.

PLANT MODELS

Evaluating plant model accuracy and accounting for
uncertain model parameters is an important part of the
system modeling process. It provides insight into the
system’s operation and helps ensure that the model is
accurate across a range of operating values [7]. One
way to determine the accuracy of a model is by
comparing test data to simulation data. Automating this
comparison using COTS software [8] can simplify this
step of system modeling.

Comparing test and simulation data can validate a plant
model for a set of ideal or nominal parameters. Plants,
however, are built on production lines and almost always
contain physical variability. They are also operated in
variable conditions, such as temperature, humidity, and
electrical noise. The ability to simulate a system across
multiple scenarios can greatly increase confidence in a
model.

MONTE CARLO TECHNIQUES

Monte Carlo methods are useful techniques for
simulating physical variability and electrical noise,
because these variables can be modeled using
Gaussian and other probability distributions. The inputs
to these statistical models can be obtained from
manufacturers’ specifications of physical parts, lab
measurements, test specifications, or historical data.

Whether conducting manual random testing or applying
sophisticated Monte Carlo techniques, the more random
values tested, the more valuable the testing is at
predicting real performance. In practice, this can mean
testing thousands of scenarios to cover a design space.
One technique used to reduce the number of test cases
needed is Design of Experiments. While this can greatly
reduce the number of tests needed, running 1000
instead of 5000 scenarios can still take a long time,
particularly as the fidelity of a model increases.

Reducing the time needed for Monte Carlo analysis can
enable engineers to fully test designs in a modeling
environment without sacrificing product schedules.

That, in turn, leads to higher quality designs and fewer
problems when the design goes into production.

HIGH PERFORMANCE COMPUTING

With the increased availability of multicore and
multiprocessor computers, and the growth of computing
clusters, many organizations already have vast CPU
processing power installed on site. Though the
processing power is available, running an individual
engineer’s simulations on the cluster or on multiple
processors is not always straightforward, particularly
from within a COTS simulation software tool. In fact, the
difficulty in setting up distributed applications is still a
barrier to tapping the processing power in one computer,
let alone a cluster of perhaps hundreds. Yet, taking
advantage of these computing resources is a critical
step to increasing the number of Monte Carlo
simulations that can be reasonably run.

Running simulations in a HPC environment is one
approach that was once prohibitively expensive due to
the cost of installing and maintaining sufficient
computing power. HPC was available mainly to
government agencies and large research laboratories,
because only these groups had the means to purchase
supercomputers. Today, most supercomputers have
been replaced by COTS computer clusters that provide
affordable, high-performance, distributed computing
environments. The number of available clusters is
growing rapidly. Last year, HPC hardware revenue hit an
all-time high of $10 billion and revenue has been
growing more than 20% over the last four years [9].

DISTRIBUTING SIMULATIONS

Certain computing problems are classified as distributed
or coarse-grained because they can be segmented
easily to run on several nodes without communication,
shared data, or synchronization points between the
nodes. Monte Carlo simulations fall into this category,
and thus are an obvious candidate to run on computing
clusters.

Some organizations have found that the time needed to
setup and maintain their COTS simulation software on a
cluster substantially reduces the time savings provided
by the additional computing power [10]. In these
situations, integration between the simulation software
and the HPC cluster is needed to maximize the
investment in computing power.

EXECUTABLES

One way to run simulations on a cluster without installing
COTS software on every node is to compile the model
into an executable [11]. For example, one can generate
ANSI/ISO C/C++ code from the model, and then compile
this code into an executable. The separate executable
can be executed from a command line, thus requiring
scripts to provide input data to the executable and
handle its output data.

While this technique is very useful for accelerating
simulations, to use it to run Monte Carlo analyses, the
engineer must write scripts that set up parameter
variations and gather results from the multiple
executables into a usable format. If the engineer is using
a remote cluster, additional scripting may be needed for
communication with a scheduler and job creation. This
can be tedious and often requires help from a cluster
administrator to customize a particular simulation setup.
The technique described below and used throughout the
remainder of the paper addresses this barrier to using
HPC resources for Monte Carlo simulations.

DISTRIBUTED COMPUTING TOOLS

An alternative to using executables is to use COTS tools
that provide an interface to the computer clusters. For
example, with SystemTest™ [8] and Distributed
Computing Toolbox™ [13] engineers can use a
Graphical User Interface (GUI) to vary a set of
parameters in a Simulink® model for Monte Carlo testing
and then define it as a job to be run on multiple
processors. With these COTS solutions, engineers can
launch the job by simply checking a box within the GUI.
An engineer using SystemTest can distribute complete
Simulink models for execution in a cluster or in a
multicore or multiprocessor computer without writing any
lines of code [8,12].

Additional time can be saved if the COTS simulation
tools are integrated with HPC schedules. For example,
a system or cluster administrator can setup a
configuration file that contains information about the
particular scheduler in the cluster and the shared
directories that may be needed. After the file is made
available to anyone who wants to use the cluster, it can
be used by programs such as the MATLAB® Distributed
Computing Engine [12] to schedule and execute jobs on
the available workers. This technique is examined in the
following DC motor model example.

DC MOTOR MODEL EXAMPLE

A DC motor model was previously described by Kozola
and Doherty [14]. We use a similar model, shown in
Figure 1, as an example with a Monte Carlo test built
around it.

The DC motor model has two inputs - the supply voltage
(Vs) and the inertial load (Jd) - and six adjustable model
parameters, as shown in Figure 2. These parameters,
which were defined based upon manufacturer
specifications for the motor, are assumed to be constant
in the model. The output characteristics of interest are
the rise time and the steady-state angular velocity.

Figure 1. DC motor model.

MONTE CARLO SIMULATIONS

We set up a test to evaluate performance that engineers
might expect to see in a real DC motor due to
manufacturing variations. Iterations of the model were
run with 1000 different sets of system parameters.
These parameters were generated using normal
(Gaussian) and uniform probability distributions.
Additionally, the input voltage signal was varied across a
range of expected operational values.

Figure 2. Physical parameters of the DC motor model.

We used SystemTest to read experimental test data
from an Excel® file. Gathered during tests of real DC
motors across a representative set of operating
conditions, these experimental test data provide real-
world response data. These data were used to
determine the model’s accuracy when predicting
performance variability of physical motors. A Monte
Carlo simulation was then performed, running the model
repeatedly with 1000 random combinations of parameter
values.

We performed a curve fit on the experimental test data,
to determine the output characteristics for the operating
conditions used in the Monte Carlo testing. We
evaluated the model’s accuracy for predicting
performance variability by comparing the expected
output characteristics derived from the experimental test
data to the output characteristics produced from the
Monte Carlo simulations. All of this was automated in a
SystemTest TEST-file.

In this paper, we are not as concerned with the accuracy
of our model as we are with the time it takes to perform
the Monte Carlo tests, compare each output to
experimental data, and report the results. We first ran
the model on a single processor, which took almost two
hours (6600 seconds). We then ran the same Monte
Carlo test using a computing cluster.

BENCHMARKING ON A COMPUTING CLUSTER

The number of workers used for a specific test run was
selected using the graphical configuration tool provided
to manage worker configurations. Each 1000-iteration
test was identical; only the number of workers used
varied from run to run. Each scenario was run four times
and the times were averaged to obtain the results shown
in Figure 3.

 Time Needed to Run 1000 Iterations
of DC Motor Model on Multiple Workers

0

1000

2000

3000

4000

5000

6000

7000

1 2 4 8 16 32

Number of Workers

Si
m

ul
at

io
n

Ti
m

e
(s

ec
on

ds
)

Figure 3. Graph showing the time savings when running Monte Carlo
example on multiple processors.

The dedicated cluster of machines used for this example
consists of 8 machines with Quad-Core AMD Opteron™
processors running at 2.4 GHz. The cluster is
homogenous, meaning that each of the quad-core
machines ran the Debian 4.0 Linux distribution, shared
4GB of RAM and communicated with the other
machines using a Gigabit Ethernet network.

As shown in Figure 3, the speed improvement is not
precisely linearly dependent on the number of workers.
This is because distributing the tasks adds its own
overhead, which includes copying over the files from the

client machine to each machine on the cluster and
transmitting input and output data between the workers
and the job manager and the network latency. In
general, total simulation time should be significantly
longer than the time needed for these overhead tasks to
achieve speed benefits from distributing tasks.

CONCLUSION

An accurate, production-representative plant model that
can be simulated in the same environment as an
embedded controller model can significantly increase
the quality of automotive systems. This paper has
presented some of the hurdles that must be overcome to
create and validate of accurate system models. We
presented a concrete example of one technique, Monte
Carlo testing, to validate plant models.

One drawback to Monte Carlo testing is the number of
simulations needed to create meaningful data and the
time needed to complete those simulations. Often,
product delivery schedules do not allow enough time to
perform more complete testing in simulation before
building hardware.

One solution to this issue is to reduce the time needed
to run multiple simulation iterations. With the rapid
growth of the HPC market and increasing availability of
computing resources to individual engineers, an
attractive option is to take advantage of the multicore
machines and computing clusters that are installed in
many organizations today. We presented tools from The
MathWorks that enable engineers to make use of these
resources without needing to redesign tests or write
additional scripts.

The benchmarking clearly demonstrated that significant
time savings is achievable using existing tests, even with
a modestly sized computing cluster. Engineers are no
longer forced to choose between meeting a production
schedule or fully testing a design. Using a combination
of distributed computing tools, SystemTest and HPC
resources, engineers can simultaneously address two
opposing demands that face the automotive industry
today: time-to-market and quality.

REFERENCES

1. Smith, Paul F., Sameer M. Prabhu, and Jonathan H.
Friedman, “Best Practices for Establishing a Model-
Based Design Culture,” Systems Engineering, 2007
SAE World Congress, Detroit, Michigan, April 2007.

2. Tung, Jim, “Using model-based design to test auto
embedded software,” EE Times, 09/24/2007,
http://www.eetimes.com/showArticle.jhtml?articleID=
202100792 (accessed Sept. 24, 2007).

3. Thate, Jeffrey M., Larry E. Kendrick, and Siva
Nadarajah, “Caterpillar Automatic Code Generation,”
Electronic Engine Controls, 2004 SAE World
Congress, Detroit, Michigan, March 8-11, 2004.

4. Hodge, Grantley, Jian Ye, and Walt Stuart, “Multi-
Target Modelling for Embedded Software
Development for Automotive Applications,” In-
Vehicle Networks and Software, Electrical Wiring
Harnesses, and Electronics and Systems Reliability,
2004 SAE World Congress, Detroit, Michigan, March
8-11, 2004.

5. “MATLAB® User’s Guide,” The MathWorks, Natick,
MA, September 2007.

6. “Simulink® User’s Guide,” The MathWorks, Natick,
MA, September 2007.

7. Wood, G. D., and D. C. Kennedy, “Simulating
Mechanical Systems in Simulink® and
SimMechanics,” Technical Report 91124v00, The
MathWorks, Inc., Natick, MA, 2003.

8. “SystemTest User’s Guide”, The MathWorks, Natick,
MA, September 2007.

9. IDC HPC Briefing, International Supercomputing
Conference, Dresden, Germany, June 26-29, 2007.

10. Hutton, Clifford, “HPC in the Kitchen and Laundry
Room: Optimizing Everyday Appliances for
Customer Satisfaction and Market Share,” SC07,
Reno, Nevada, November 11-16, 2007.

11. “Real-Time Workshop® User’s Guide”, The
MathWorks, Natick, MA, September 2007.

12. Ghidella, J., A. Wakefield, S. Grad-Freilich, J.
Friedman, and V. Cherian, “The Use of Computing
Clusters and Automatic Code Generation to Speed
Up Simulation Tasks,” AIAA Modeling and
Simulation Technologies Conference and Exhibit,
Hilton Head, South Carolina, Aug. 20-23, 2007.

13. “Distributed Computing Toolbox User’s Guide”, The
MathWorks, Natick, MA, September 2007.

14. “MATLAB® Distributed Computing Engine System
Administrator's Guide”, The MathWorks, Natick, MA,
September 2007.

15. Kozola, Stuart and Dan Doherty, "Using Statistics to
Analyze Uncertainty in System Models," MATLAB
Digest, May 2007,
http://www.mathworks.com/company/newsletters/dig
est/2007/may/uncertainity.html.

ADDITIONAL SOURCES

Automotive Engineering International, March 2005.

Martinez, Wendy L., and Angel R. Martinez.
Computational Statistics Handbook with MATLAB®.
Chapman & Hall/CRC, 2002.

Morgan, Byron J. T. Applied Stochastic Modelling.
Arnold, 2000.

Robert, Christian P., and George Casella. Monte Carlo
Statistical Methods. Springer, 2004.

*The MathWorks, Inc. retains all copyrights in the figures and excerpts of
code provided in this article. These figures and excerpts of code are used with
permission from The MathWorks, Inc. All rights reserved.

©1994-2008 by The MathWorks, Inc.

MATLAB and Simulink are registered trademarks of The MathWorks, Inc.
See www.mathworks.com/trademarks for a list of additional trademarks.
Other product or brand names may be trademarks or registered trademarks of
their respective holders.

