
2008-01-1469 

Best Practices for Verification, Validation, and Test in Model-
Based Design  

Brett Murphy, Amory Wakefield, and Jon Friedman 
The MathWorks, Inc. 

Copyright © 2008 The MathWorks, Inc. 

ABSTRACT 

Model-Based Design is no longer limited to R&D and 
pilot programs; it is frequently used for production 
programs at automotive companies around the world.  
The demands of production programs drive an even 
greater need for tools and practices that enable 
automation and rigor in the area of verification, 
validation, and test.  Without these tools and practices, 
achieving the quality demanded by the automotive 
market is not possible.  This paper presents best 
practices in verification, validation, and test that are 
applicable to any program, but are critical when applying 
Model-Based Design in production programs. 

INTRODUCTION 

Moore’s law holds that the number of transistors in an 
integrated circuit doubles every couple of years. Thanks 
to this trend, the amount of software embedded in 
automobiles, aircraft, consumer electronics, and many 
other types of systems continues to grow. In the past, 
engineers developed software using traditional 
development tools such as editors, compilers and 
debuggers. But as the size and complexity of the 
embedded software programs grew, these tools and the 
development processes they support fell short. The 
challenges were particularly acute in the development of 
safety-critical embedded systems, many of which are 
found in automotive and aerospace applications. 

Model-Based Design helps address the challenges of 
embedded system development [1][2]. Using models at 
the core of the development process provides engineers 
with insight into the dynamics and algorithmic aspects of 
the system through simulation. In addition, the models 
are commonly used: 

• as executable specifications 
• to communicate (sub-)system requirements and 

interface definitions 
• to provide virtual prototypes or models of the 

complete system 
• for automatic code generation of embedded software 

algorithm or logic 

 
One of the most valuable aspects of Model-Based 
Design is the availability of executable models to 
perform Verification, Validation, and Test (VV&T) 
throughout the development process, especially its 
earliest stages. A study conducted by NASA on Internal 
Verification and Validation found that a large number of 
errors discovered in the testing stage late in 
development processes are actually introduced at the 
beginning of the process as requirements errors. 
Moreover, fixing these requirements errors in the testing 
phase was more than 10 times more expensive than if 
they had been found earlier in the process during the 
design phase [3].  

In our experience, organizations attempting to ensure a 
rigorous development process using Model-Based 
Design need to define and establish effective VV&T 
activities, especially early in the development process. 
This paper presents a fairly common (and perhaps 
common-sense) set of best practices found across a 
number of organizations with rigorous processes. 

DEVELOP MODEL TESTS WITH THE DESIGN 

Through modeling and simulation, embedded 
developers are able to design, visualize, and debug 
larger amounts of system logic than by using traditional 
development methods. Many engineers, however, do 
modeling and simulation in an ad-hoc manner. They use 
their judgment, and perhaps a design specification, to 
select the conditions used to simulate their designs. 
They may capture and document results, but the 
simulations are often difficult to replicate later. For 
example, if a design error is found during code testing, it 
is often difficult to replicate the same test on the model 
to determine the root cause of the error and provide a 
complete and verified fix. 

The increasing complexity of embedded systems and 
the increasing need for development standards in 
building safety-critical systems are driving development 
groups to use more systematic processes [4]. This 
growing need for systematic techniques holds for 
simulation as well. To this end, development groups 
using simulation techniques are developing and applying 



test suites to the models and then reusing these suites 
to test the software implementation. These tests include 
both the initial conditions and input sequences for the 
simulation, as well as the expected outputs for the test. 
Well defined tests also have a description that explains 
its purpose, the requirement it is testing, or both. The 
entire suite is developed as a test harness that can be 
executed repeatedly in simulation. This process is often 
referred to as model-in-the-loop (MIL) testing. 

As shown in Figure 1, the best practice is to reuse the 
test harness developed for MIL testing against the 
software implementation of the model on the host 
development environment. This practice, known as 
cosimulation of the code or software-in-the-loop (SIL), 
provides confidence that the code matches the desired 
behavior developed and specified in the model. Because 
the test harness is the same in MIL and SIL testing, it is 
easier to compare the output of both tests and replicate 
any identified errors. Often engineers will “elaborate” the 
set of tests used in SIL, adding tests that cannot be 
performed in MIL testing.  In addition to ensuring there 
have been no changes in behavior from stage to stage, 
SIL tests are used to ensure that the development step 
did not introduce errors. 

Tools are now available to take this process one step 
further by testing the software after it has been compiled 
and downloaded to an embedded target or processor. 
This cosimulation step is often called processor-in-the-
loop (PIL) testing. PIL tools provide a method to execute 
the tests - originally created on a development host 
computer like a PC – on the software while it is running 
on an embedded processor. One technique uses the 
host-to-target communications mechanism provided by 
the embedded Integrated Development Environment, 
which engineers use to compile and download the code 
on to the target. With this technique, tests or simulations 
running on the host development computer 
communicate synchronously with the code running on 
the embedded target, enabling engineers to run the tests 
against the code on the target. Again, using the same 
test harness makes it straightforward to compare PIL 
results with the original MIL results. This comparison of 
test results between the embedded code and the original 
model gives engineers confidence that the behavior of 
the component has not changed after compilation and 
download and that the code is functionally correct. 

As noted previously, errors become increasingly more 
costly the closer to production they are found. A best 
practice in VV&T for Model-Based Design is to develop 
model tests with the design. Developing a test harness 
that can be used for MIL, SIL, and ultimately PIL testing 
helps developers find errors early in the process and 
ensure errors have not been introduced during 
implementation or integration. 

 

 

Figure 1. Develop tests to run against the model (model-
in-the-loop); reuse those same tests with the code 
(software-in-the-loop) and embedded code (processor-
in-the-loop). 

TEST EXHAUSTIVELY IN SIMULATION 

There is an old saying, “the only person who believes 
the simulation results is the engineer who developed the 
model.” The corollary to that statement is “the only 
person who does not believe the test results is the test 
engineer.”  While there is no one solution that meets all 
testing needs, most engineers are more confident with 
the results from hardware testing.  Fully exploring the 
design space variability in simulation, however, will save 
time later in the development cycle. In simulation, 
engineers develop requirements validation and initial 
verification-based test scenarios.   

Almost every test scenario involves varying something:  
inputs, plant parameters, environmental factors.  Time 
and expense often limit how much variability can be 
tested. By testing in a model environment, however, 
different test cases can be run much faster and, if the 
processing power is available, in parallel.  Exploring the 
entire parameter space in simulation can narrow down 
the set of critical tests that must be run in real time or in 
the real world later.  Simulation models also enable 
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engineers to test conditions that would be destructive or 
cost-prohibitive to run in the lab or on the road. For 
example, if a brake system controller does not work 
correctly the first time it is tested on a vehicle then costly 
prototypes could be damaged or destroyed. 

RUN THE SAME TESTS IN SIMULATION AND IN 
THE LAB 

The best results are achieved when there is a continuum 
of tests that run throughout – and in parallel with – the 
design process.  When models are developed, tests that 
focus on the aspects of the design captured in the model 
should be run on the model.  As the design evolves and 
is implemented, the corresponding tests should also 
evolve and be applied in parallel. Thus, at the end of the 
design, engineers are not merely relying on what they 
believe in, but also have a well established set of 
continuous verification results that demonstrate the 
efficacy of the design. 

To run the same tests in simulation and in the lab, 
engineers need tools that facilitate hardware 
connectivity, measure physical quantities in a laboratory 
environment, and link to the modeling environment.  
These tools enable the reuse of test vectors run under 
simulation in hardware-based testing. Using identical 
test cases makes comparing hardware and modeling 
results much easier. 

HARDWARE-IN-THE-LOOP TESTING  

It is common for powertrain engineers to develop control 
and on-board diagnostics algorithms in parallel with the 
physical powertrain components. The software 
realization of those algorithms takes a long time and 
must be started very early in the design cycle so both 
the hardware and software arrive at the end of the 
assembly line functioning properly.  To perform 
validation of the algorithms before production hardware 
is available, engineers use hardware-in-the-loop (HIL) 
testing.  In this context, HIL is simulation used to test 
production ECUs and to test prototype control 
algorithms. 

This kind of testing requires models of the physical 
components that have sufficient fidelity to test the 
various execution paths within the software. An 
environment for modeling and simulating physical 
systems is needed.  With Simulink® and Simscape™ 
from The MathWorks, engineers can simulate the plant 
model and then use Real-Time Workshop® to generate 
code that can be run on a HIL computer.  

INTEGRATION TESTING 

One cornerstone of Model-Based Design is to make 
continuous testing and validation a part of the design 
process. In this process, components and subsystems 
are built, tested, integrated with larger systems, and 
tested again. This approach exposes defects in the 

interface between components or subsystems as early 
as possible. 

When integrating several subsystems, it is important to 
have a thorough understanding of the requirements of 
each system and component. A best practice is to 
construct test scenarios for each of these requirements 
up front in the design and validate the subsystem 
models against these test scenarios. This process 
validates the models, the requirements and the test 
scenarios and reduces the number of errors introduced 
at this early development stage. When engineers reuse 
the same model tests in production testing, they reduce 
development effort significantly. 

USE ALL AVAILABLE TECHNIQUES 

Often engineering teams look to just one set of 
verification tests or verification criteria to determine 
whether a design meets the specifications.  For 
example, some engineering organizations use a set of 
functional tests to verify the design.  Others seek to 
“cover” the code with tests and use coverage metrics 
such as Modified Condition/Decision Coverage 
(MC/DC), a required metric in some safety-critical 
system development standards [5].  In most cases, 
however, there is no single test that can fully verify that 
the design has met the requirements and will not fail in 
operation.  Instead, verification can be viewed as a 
series of filters that are applied to a design to ensure 
that the final production implementation meets all of the 
design specifications – explicit, implicit, and derived. 

With the new generation of tools, a new verification 
technology is now available that goes beyond testing. 
Formal methods can prove that a design meets certain 
specified properties and generate examples of violations 
if it does not. These tools can also generate tests 
automatically to meet specific test objectives inserted by 
the developer or turned on model-wide.  For example, a 
test engineer can instruct the tool to generate a set of 
test vectors that will provide complete MC/DC structural 
model coverage. For code verification, formal methods 
can be used to detect runtime errors or prove source 
code reliability without compiling. While currently limited 
to the component, sub-system, or module level due to 
scalability of the underlying formal analysis technology, 
these tools provide powerful new methods for VV&T in 
Model-Based Design. 

DESIGN VERIFICATION USING TEST GENERATION 
FROM MODELS 

Determining when a test suite is sufficient has often 
been considered more art than science because it is 
typically based on the judgment of a design or test 
engineer. MC/DC is an emerging metric that provides a 
more objective measure of test completeness. Coverage 
is a measure of how much of the logic in a model – or in 
source code – has been exercised during testing. 
MC/DC is the most stringent measure of coverage. The 
U.S. Federal Aviation Administration’s (FAA) DO-178B 



safety-critical standard requires complete MC/DC of any 
software being deployed in a safety-critical system [3]. 
Writing a set of tests that achieve 100% MC/DC is 
challenging. The controller shown in Figure 2 is not very 
complicated. We found, however, that writing the tests 
that exercise every logical path in the model would take 
a design engineer at least as long as the original design 
effort. With a test generation tool this can take as little as 
three seconds, resulting in the tests shown in Figure 3. 

 

Figure 2. A cruise control model requiring a test suite 
that achieves 100% MC/DC coverage. 

 

Figure 3. Automatically generated tests for 100% 
MC/DC structural coverage of a cruise control model. 

Automatic test generation can be useful to an OEM 
handing off a subsystem or component model to a 
supplier as a software specification. The OEM can use 
test generation to develop tests that they can use as 
acceptance tests via SIL. The supplier can generate 
tests from a more detailed version of the specification 
model to ensure the code they develop matches the 

behavior of the model via PIL. Both sides are better able 
to ensure that the code is correct before it is integrated 
into a controller.  As a result, problems are identified 
before integration or hardware-in-the-loop testing. 

CODE VERIFICATION WITH FORMAL METHODS 

Until recently, there were three options for detecting run-
time errors in embedded software: code reviews, static 
analyzers, and trial-and-error dynamic testing. Code 
reviews are labor-intensive and often impractical for 
large, complex applications. Static analyzers identify 
relatively few problems and, most importantly, leave 
most of the source code undiagnosed. Dynamic or 
white-box testing requires engineers to write and 
execute numerous test cases. When tests fail, additional 
time is required to find the cause of the problem through 
an uncertain debugging process. Even with tests 
developed from a model, the tests can miss design 
errors that manifest themselves in the code as run-time 
errors. These can include: 

• Overflows and underflows 
• Division by zero and other arithmetic errors 
• Out-of-bound array access 
• Dead (or unreachable) code 
 
Other code errors that can show up, especially in a mix 
with hand-generated code, include: 
 
• Illegally de-referenced pointers 
• Read-only access to non-initialized data 
• Dangerous type conversions 
 
Code verification tools based on formal methods, such 
as MathWorks™ PolySpace® tools, analyze code and 
detect these types of run-time errors. More importantly, 
use of these tools can prove the absence of such errors 
and provide strong assurance of the code’s reliability. 
For the code shown in Figure 4, proof of code 
correctness or the absence of errors would be indicated 
by all lines colored as green. In addition, formal methods 
allow a tool to automatically verify important dynamic 
properties of programs. By verifying the dynamic 
properties of embedded applications, formal methods 
can encompass all software behaviors and all variations 
of input data, including how software can fail. 

Used in addition to testing, as part of a development 
process, code verification tools provide another 
technique for identifying design and implementation 
errors that would be difficult to find and costly to correct 
later in the development process. 



 

Figure 4. Code verification tools using formal methods 
can detect run-time errors, identify dead code, and prove 
code correctness. 

CONCLUSION 

Verification, validation, and test activities are critical to 
the success of any development process.  With Model-
Based Design, models are used to verify, validate, and 
test a design early and continuously through out the 
design process. This improves a team’s ability to deploy 
a high-quality embedded system on time compared to 
traditional methods, which rely on verification, validation 
and testing at the end of the process. There are many 
ways a development organization can apply verification 
and validation techniques when using Model-Based 
Design, but our experience with several process 
adoptions reveals a clear set of best practices: Develop 
model tests with the design, Test exhaustively in 
simulation, Run the same tests in simulation and in the 
lab, and Use all available techniques. Applying these 
best practices helps ensure a development process that 
takes full advantage of Model-Based Design to provide 
more rigorous verification, validation, and test. 
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