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Abstract 

Recreating traffic scenarios for testing autonomous driving in the real 
world requires significant time, resources and expense, and can 
present a safety risk if hazardous scenarios are tested. Using a 3D 
virtual environment to enable testing of many of these traffic 
scenarios on the desktop or cluster significantly reduces the amount 
of required road tests. In order to facilitate the development of 
perception and control algorithms for level 4 autonomy, a shared 
memory interface between MATLAB, Simulink, and Unreal Engine 
4 can send information (such as vehicle control signals) back to the 
virtual environment. The shared memory interface conveys arbitrary 
numerical data, RGB image data, and point cloud data for the 
simulation of LiDAR sensors. The interface consists of a plugin for 
Unreal Engine, which contains the necessary read/write functions, 
and a beta toolbox for MATLAB, capable of reading and writing 
from the same shared memory locations specified in Unreal Engine, 
MATLAB, and Simulink. The LiDAR sensor model was tested by 
generating point clouds with beam patterns that mimic Velodyne 
HDL-32E (32 beam) sensors and is demonstrated to run at sufficient 
frame rates for real-time computations by leveraging the Graphics 
Processing Unit (GPU). 

Introduction 

As the automotive industry progresses toward autonomy, the need for 
simulation-based development and validation increases, as does the 
need for greater detail and volume in simulations. Full autonomy 
requires an unprecedented amount of trust placed in the vehicle’s 
systems to safely handle a broad range of scenarios, and such trust 
requires extensive testing. Estimates are on the order of 100 million 
km and several hundred million euros for validation of autonomous 
systems using road tests alone [1]. These estimates, along with the 
dangers associated with testing specific scenarios, further motivates 
the use of simulation.  

The systems to be simulated also go beyond vehicle dynamics alone, 
requiring sensor models in the loop with perception and control 
algorithms, to test all aspects of an autonomous vehicle or driver 
assist system. This includes the generation of synthetic camera data at 
the RGB level, synthetic LiDAR point clouds, and synthetic radar 
data, though this work focuses on the first two. The ability to 
annotate this data with ground truth information is also necessary on 
a large scale, both for use in evaluating the performance of perception 
systems, and for machine learning systems.  

Methodology 

This paper focuses on an integration of capabilities existing within a 
commercially available gaming engine and the MathWorks toolchain, 
using a shared memory interface to enable co-simulation between the 
two tools. It establishes a complete workflow for the simulation of 
vehicle perception systems in a 3D driving environment. The 
application of these capabilities can be extended to simulate and test 
control systems as well, since the exchange of information over 
shared memory is equally possible in both directions between the 
virtual environment and the algorithms to be tested. 

 

Figure 1. Block diagram of the simulator setup. 

Software Tools Used 

This paper focuses on the use of Unreal Engine 4 to create 3D virtual 
driving environments, and the MathWorks toolchain as the 
environment in which data is processed. Unreal Engine is a free, open 
source video game engine. As such, it was possible to build new 
functionality within this tool to support the export of data to 
MATLAB over shared memory, and to acquire data about the 3D 
environment necessary to generate synthetic camera and LiDAR data. 
The gaming engine provides an efficient means of creating 3D 
environments and dynamic scenarios through a drag and drop 
interface; it provides the option of either C++ scripting or the visual 
scripting language, Blueprints. Environments created in this method 
can achieve a realistic, detailed appearance and geometry for the 
generation of synthetic camera and LiDAR data. Meanwhile, the 
MathWorks toolchain can process this data and prototype perception 
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and control algorithms using MATLAB and Simulink. This includes 
toolboxes for computer vision, image processing, and LiDAR point 
cloud processing; therefore enabling an interface between the two 
software tools and allowing a full pipeline to be tested that includes 
these capabilities. 

Shared Memory Interface 

In order to exchange numerical data between MATLAB and Unreal 
Engine, a shared memory interface was developed. Shared memory 
allows multiple processes running on a single machine to 
simultaneously access the same location in memory. In order to 
access shared memory using a string identifier, a library of 
corresponding read/write functions were developed for both Unreal 
Engine and MATLAB. The utilities are provided in the form of an 
Unreal Engine plugin and MATLAB system objects, which provide a 
simplified interface for end-users to share arbitrary data between the 
two processes. The use of a MATLAB system object allows users to 
provide a common implementation for accessing shared memory in 
both MATLAB and Simulink. Using this shared memory interface,  
users can program the virtual simulator in Unreal Engine to send 
numerical data to MATLAB, wait for MATLAB to execute 
algorithms with this data, and finally read data within the simulator; 
thus facilitating full bi-directional communication for the simulation 
and visualization of dynamic systems.  

 

Figure 2. Write the vehicle position and velocity within the Unreal Engine to 
shared memory. 

 

Figure 3. Visualizing the vehicle velocity and position transmitted from the 
virtual simulation environment in MATLAB. 

Alternate Communication Methods Explored 

The choice of using shared memory as the communication interface 
was necessitated by the need to efficiently exchange large amounts of 
data, such as high definition images from virtual cameras and 
distance measurements from virtual LiDAR sensors within the Unreal 
Engine project. With design iteration, two other popular data 
exchange methods, UDP and TCP/IP, were also explored. However, 
both methods were much slower in comparison to using shared 
memory. The shared-memory interface was the only interface that 
was fast enough to facilitate data-exchange rates that allowed the 
Unreal project to run at 30 FPS or faster while still being able to 
process camera and LiDAR data in MATLAB. Note that TCP/IP and 
UDP communication are still useful in cases where MATLAB and 
the Unreal Engine project is not running processes on the same 
machine.  

 

Virtual Camera Setup 

The Unreal Engine-based virtual simulator platform provides photo-
realistic images which can be used to facilitate prototyping computer 
vision algorithms in MATLAB; these extract useful information such 
as vehicles, pedestrians, lanes etc. from images. To facilitate the 
workflow, we set up a virtual camera sensor in Unreal Engine using a 
Scene Capture 2D camera actor. The Scene Capture 2D actor is 
available with Unreal Engine and can be placed anywhere in the 
virtual driving environment. The images rendered by this actor are 
transmitted via the shared memory interface to MATLAB. The 
horizontal field of view angle, as well as image size and resolution, 
are adjustable in the Scene Capture 2D component. In addition, it is 
also feasible to add arbitrary post processing effects to the camera in 
order to model lens distortion effects often present in actual camera 
sensors. Image disturbances can also be introduced after transmission 
of the image to MATLAB. To facilitate operating on these images in 
MATLAB, the rendered images are transposed and the image format 
is changed; the memory layout of the image is column-major, with 
separate image planes for each RGB color channel.  
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Figure 4. Example of  the shared memory interface for sending images to 
MATLAB, alongside ground truth information to identify bounding boxes for 
objects of interest. 

Virtual LiDAR Data Generation 

For autonomous vehicle navigation, LiDAR is an important sensor 
that provides accurate distance measurements and reflectivity of 
objects. A virtual LiDAR sensor model that transmits distances and 
reflectivity of objects in the 3D scene to MATLAB is provided as 
part of the package. Below we describe the details of the sensor 
model. 

Modeling Virtual LiDAR Distance Measurements 

To model the sensor’s distance measurements to objects in the scene, 
we repurposed a Scene Capture 2D camera’s rendering pipeline in 
Unreal Engine, to output a texture image where each pixel location in 
the image contains the distance of the visible surface from the sensor. 
The depth image textures are then sampled at predetermined 
locations which correspond to the LiDAR’s scanning pattern. This 
scanning pattern is fixed and can be determined once at initialization 
using the horizontal and vertical angular resolution that are part of the 
parameters of the sensor which can be adjusted in the model. In 
practice, we found that a Scene Capture 2D camera is only capable of 
reliably rendering scenes within a 120-degree field of view. To model 
a LiDAR sensor that covers a full 360-degree field of view, we set up 
three Scene Capture 2D cameras and combined the depth images 
from each camera. These components are brought together into a 
single 360 degree LiDAR actor, which is provided as part of the 
plugin. 

 

Figure 5. The figure shows the scanning pattern of the LiDAR sensor model in 
3D and the image pixel locations at which we sample a depth image in order 
to model the beam pattern traced by the sensor. This plot corresponds to a 
sensor with horizontal resolution of 0.16 degrees, vertical resolution of 1.33 
degrees, vertical field of view of 41.3 degrees, and horizontal field of view of 
120 degrees. 

Modeling Surface Reflectivity of LiDAR Sensors 

Reflectivity of each beam is important to model as it may be used by 
the autonomous vehicle software. For example, surface reflectivity 
can be used to distinguish lane markings from asphalt since lane 
markings tend to possess higher reflectivity than asphalt in the 
LiDAR spectrum. However, reflectivity is also influenced by other 
factors, such as the direction of the beam relative to the surface it is 
reflected from, the properties of the surface’s material, and the 
distance the LiDAR beam travels.  

We model reflectivity of the surface to a LiDAR beam with the 
empirical Phong shading model [2] as the sum of diffuse and specular 
reflections of a surface. The key difference between LiDAR and the 
visible light electromagnetic spectrum is that the diffuse and specular 
reflection coefficients of each material need to be specified as 
properties of the material for the LiDAR’s wavelength. The 
reflectivity is given by the sum of the diffuse and specular reflections. 
Our model assumes that transmitting and receiving elements of the 
LiDAR sensor are co-located at the virtual LiDAR sensor’s position 
and that there is no ambient energy in the LiDAR spectrum. 

𝑅𝑑𝑖𝑓𝑓𝑢𝑠𝑒  = 𝐾𝑑𝑖𝑓𝑓𝑢𝑠𝑒  ∗  (𝑃̂ − 𝐶̂).  𝑁̂                                   

𝑅𝑠𝑝𝑒𝑐𝑢𝑙𝑎𝑟  = 𝐾𝑠𝑝𝑒𝑐𝑢𝑙𝑎𝑟  ∗ (2(𝑃̂. 𝐶̂) 𝑁̂ −  𝐶̂) . 𝐶̂ )𝛼 

𝑅𝑡𝑜𝑡𝑎𝑙 = 𝑅𝑑𝑖𝑓𝑓𝑢𝑠𝑒 +  𝑅𝑠𝑝𝑒𝑐𝑢𝑙𝑎𝑟    

Where, 

𝑅𝑑𝑖𝑓𝑓𝑢𝑠𝑒= diffuse reflection 

𝑅𝑠𝑝𝑒𝑐𝑢𝑙𝑎𝑟= specular reflection 

𝐾𝑑𝑖𝑓𝑓𝑢𝑠𝑒 = diffuse reflection coefficient of the reflecting surface  

𝐾𝑠𝑝𝑒𝑐𝑢𝑙𝑎𝑟 = specular reflection coefficient of the reflecting surface  

𝑁̂ = the normalized surface normal vector of the reflecting surface at 
a given pixel location 

α = the specular exponent of the surface 
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𝑃̂ = the normalized position vector of the reflecting surface 

𝐶̂ = normalized position vector of the LiDAR sensor 

𝑅𝑡𝑜𝑡𝑎𝑙 is the reflectivity of the surface 

Due to time constraints, we could not find the reflectivity coefficients 
for typical materials such as buildings, foliage, asphalt, and cars 
based on observed values from an actual sensor for these materials. 
We approximated the diffuse reflection coefficient in the LiDAR 
spectrum by using the grayscale value of the material color in the 
visible light spectrum. The specular reflection coefficient of the 
materials for the LiDAR spectrum was assumed to be the same as 
that of the visible light spectrum. Our model also does not account 
for the decrease in reflectivity with increasing distances to surface, 
due to loss of energy when propagating through a medium. However, 
this information can be incorporated into the model once the 
reflectivity values are more accurately compared to that of an actual 
LiDAR sensor. Also, note that some real world LiDAR sensors rotate 
around their vertical axis to capture the full 360-degree horizontal 
field of view, while our model captures a full 360-degree field of 
view instantaneously in the virtual environment without any physical 
rotation. 

The mathematical model for the LiDAR sensor was initially 
prototyped in MATLAB. However, in order to support running the 
virtual sensor model in real time, all computations were later 
redesigned to run on the GPU as part of the Unreal Engine plugin. 
The distance and reflectivity data obtained was then transmitted to 
MATLAB via the shared memory interface described above. 

In practice, we found that transmitting the distances as floating point 
values in a Cartesian 3D coordinate system increases the amount of 
data that needs to be exchanged via the shared memory interface, thus 
hindering simulation speed. To avoid this issue, we quantized the 
distance and reflectivity output and encoded them into a 32-bit 
integer word before transmitting it to MATLAB. In MATLAB, the 
values are decoded and can be either used directly in spherical 
coordinates or converted back to a point cloud in Cartesian 
coordinates (by multiplying the distances for each beam with the 
corresponding unit vector along the beam direction). 

Alternative Methods to Model LiDAR Sensors 

Another technique explored was modeling the LiDAR sensor using 
ray tracing, which is a method that is already provided as part of the 
Unreal Engine programming environment. We found that performing 
ray tracing for a large number of LiDAR beams using this method is 
computationally very expensive. Furthermore, ray tracing capabilities 
that are available to programmers only run on the CPU, which causes 
the simulator to run  slow (at 1-2 FPS on a Lenovo S20 workstation 
with an NVIDIA GTX 980 graphics card). Because real-time 
interaction with other actors in the virtual driving simulator is  
important, this method was not suitable for our application. We did 
not pursue using multi-threaded implementation of the ray tracing 
algorithm since the alternative technique described in our article met 
the needs. 

 

 

 

 

Figure 6. The figure shows the 3D scene and the corresponding LiDAR output 
viewed in MATLAB as a point cloud. This example shows a 360-degree field 
of view. Vertical and horizontal field of view and beam spacing are adjustable 
parameters. The reflectivity of each point is shown using a color map that 
varies from blue for a reflectivity of 0, to green for a reflectivity of 1. 

Sharing LiDAR Sensor Data with Autonomous Vehicle 

Software 

Ford’s application of the MathWorks toolchain supports validation of 
autonomous driving software running in Ubuntu Linux. Multiple 
methods can be used to integrate the virtual LiDAR sensor data into 
the autonomous vehicle software. In our testing, we explored two 
methods: data transmission via UDP packets and direct binary log 
construction. The following is an overview and analysis of these two 
methods. 

For an initial proof of concept, we decided to use a Windows 10 
laptop (Razer Blade 2016) to run Unreal Engine, MathWorks Unreal 
Engine plugin prototype, and MATLAB in conjunction with an 
Ubuntu 14.04 laptop (Dell Precision M6800) running Ford’s 
autonomous vehicle code. We connected both laptops via an Ethernet 
connection, configured a MATLAB script to send UDP packets, and 
configured the Ubuntu laptop to listen to the port we had established 
through MATLAB. Once this connection was made, we needed to 
precondition the raw sensor data received via shared memory from 
Unreal Engine by formatting the data correctly to meet the specs for a 
Velodyne HDL-32E LiDAR. This included: 

• Creating a data structure of correct dimensions and data 
type 

• Quantizing distance data to the nearest value set by spec (in 
this case, 2mm range resolution) 

• Setting default values for out-of-spec data points (negative 
and extreme values) 

• Looping continuously through the data to create and send 
UDP packets using MATLAB’s UDP functionality  

 
This setup allowed our Windows laptop to act as a LiDAR sensor, 
since it was connected via Ethernet and provided the exact same UDP 
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format our Velodyne LiDAR sensors use in autonomous vehicle 
navigation. This setup also took away the need for any post-
processing code and allowed our AV code to read in the data directly. 
It is also possible to run both the Unreal Engine simulation and 
autonomous vehicle code together on the same Linux machine, in 
which case data packets can be generated in a similar manner, except 
without the need for a physical Ethernet connection. 

 

Figure 7. Synthetic LiDAR data that was transmitted from Unreal Engine to a 
viewer that exists alongside Ford’s autonomous vehicle code. 

For this proof of concept, the code was not yet optimized for speed. 
The data speed averaged 300 packets sent/sec. Because each UDP 
packet contains a set of 12 firing data sets, this is equivalent to 3600 
sets per second. This data signifies we received approximately less 
than 1.5 revolutions per second. Our spec required 10 revolutions per 
second, meaning this method was too slow for real-time simulation 
on the laptop hardware used. Further optimizations could be made to 
reach our desired revolutions/sec on such hardware, but it was 
decided to achieve useful results in the meantime by creating logs 
that Ford’s autonomous vehicle code could read, showing a scenario 
that was previously simulated. This leads to our second use case: 
binary log construction. 

For binary log construction, we preconditioned the data in the same 
manner as we did for the interactive use case, where the autonomous 
vehicle code was in the loop. The only difference is that data was sent 
to a log rather than directly to the autonomous vehicle code. Before 
we preconditioned the data, we stored the raw sensor data directly 
into a binary data file to prevent slowdown for our log construction 
procedure. After creating the file, we created a parser that would 
parse this file and format all data as was described with the UDP 
packet process above. Once we created 12 sets of 32 firings with their 
associated rotation angle and a Velodyne data start identifier, we  
added the remaining information required by the struct that our 
autonomous vehicle code uses for LiDAR data packets. This included 
spoofing extra timing data that was included in our struct so the struct 
would be complete for the communication protocol and logging 
framework to read. Once the struct format was created, we 
constructed another layer to wrap struct information into the 
communication protocol format. One advantage of this use case was  
the ability to manipulate the log reading speed to run faster or slower 
than real time if desired. Finally, the data was stored into a binary 

data file as repeated messages, each containing their proper header 
information, struct information, and LiDAR data information. This 
log was then transferred (if necessary) to the machine running the 
autonomous vehicle code, which then read and played the log back. 

Creating the logs in this manner allowed us to run faster, slower, or 
exactly at 10 revolutions/sec, by manipulating the timing to do so. 
This was a great advantage for resimulation; interactive simulation 
would be limited though to either slower than real time, or to running 
on computer clusters or other hardware more powerful than the 
machines used in this work. 

Directions we intend to take to optimize the communication between 
Unreal Engine and AV code include: 

• Revise the UDP packet processing code for higher 
performance. 

• Unless the use case is to test the embedded hardware, avoid 
transmitting data between different machines; run both the 
sensor model simulation and the AV code on a single Linux 
machine or cluster. 

• Bypass UDP by outputting data directly to a format used 
downstream of that by the AV code. 

Once the LiDAR data is read by the AV code, it can then be used for 
obstacle detection, lane marking detection, localization, and other 
applications. 

Future Work 

With the release of the initial sensor models in the beta version of  
MathWorks interface to Unreal Engine, we developed proof of 
concept capabilities to model camera and LiDAR sensors. We plan to 
extend this capability to also model a radar sensor using a similar 
method to compute the surface reflection.  

As part of future work on the camera sensor, the current model needs 
to be extended to offer additional sensor parameters that can be 
configured to match the settings of real world camera sensors. For 
instance, we need the ability to specify intrinsic camera parameters, 
such as focal length and principal point. We also plan to add fisheye 
and wide-angle lens distortion parameters. In addition, we intend to 
collect ground truth for objects viewed by the camera for use in the 
training of machine learning algorithms, with applications such as 
object detection and classification, or image segmentation.    

For future work on the LiDAR sensor, we plan to compare the 
reflectivity values with that of an actual LiDAR sensor, which will 
aid in completing the empirical model used to calculate reflectivity. 
After estimating the values of the reflection coefficients of common 
materials in the LiDAR spectrum, we can enhance the tool to allow 
users to specify these properties for any material used in Unreal 
Engine. We also plan to model an alternative version that can take 
into account the physical rotation of the sensor about a vertical axis. 

Summary/Conclusions 

Overall, a workflow was successfully established and tested that 
provides an interface between a 3D virtual driving environment and 
vehicle perception systems related to autonomy or active safety. This 
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virtual environment was shown to be capable of generating a 
synthetic camera and LiDAR data that resembles data from real 
sensors, and is capable of communicating bidirectionally, via shared 
memory with algorithms in development.     
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Definitions/Abbreviations 

LiDAR  light detection and ranging 

UDP user datagram protocol 

TCP/IP transmission control 
protocol/internet protocol 

GPU Graphics Processing Unit 

AV autonomous vehicle 

RGB Red Green Blue (image) 
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