
www.embedded-world.eu

Creation and Variation of Traffic Scenarios for

Virtual Validation of Automated Driving Systems

Marco Roggero1, Shashank Sharma2, Will Tripp3, Mark Corless4, Sravan Kumar Chaganti5

1: The MathWorks GmbH, Aachen, Germany

2: The MathWorks GmbH, Ismaning, Germany

3: The MathWorks Inc, Natick (MA), USA

4: The MathWorks Inc, Novi (MI), USA

5: The MathWorks India Pvt Ltd, Hyderabad, INDIA

Abstract—Automated driving is getting massive attention from

industry, road authorities, and consumers. Tests are crucial for

convincing the market that autonomous vehicles are reliable and

secure. Virtual validation provides an efficient and systematic way

to test these systems. Such validation requires simulation

environments that closely resemble real-world environments and

include control algorithms, options for creating traffic scenarios,

sensor models, and representations of vehicle dynamics. In this

paper, we first show different ways of generating virtual driving

scenarios. These ways include designing virtual driving scenarios

using both scripts and graphical user interfaces, importing

scenarios from preexisting libraries, and generating scenarios

using data recorded from on-vehicle sensors. In a second section,

we explain how to programmatically create variations of an

existing scenario. The generated scenarios can be used in closed-

loop simulations to model and test controllers.

Keywords—Automated driving; Driving scenario; Virtual

validation; Scenario generation

I. INTRODUCTION

Validation of autonomous driving (AD) systems requires,

besides road tests, computer-based simulations in which

perception and control algorithms are tested under many

different conditions. Such conditions include events such as

image reflections, changes in road marking colors, or the

presence of unexpected objects in the driving environment. If

compared with traditional automotive simulation methods,

simulations for AD need model not only the ego vehicle but also

the behavior of vehicles, pedestrians, and other actors.

Simulations must also model sensors such as lidars, cameras,

and radars to enable the generation of synthetic sensor data. AD

systems cannot be developed without simulations.

In this paper we first describe different options for scenario

creation and simulation in MATLAB®. We then focus on two

examples for the cuboid simulation environment that show how

to generate a virtual scenario from recorded vehicle data and

how to programmatically change scenario parameters to

generate many different traffic conditions on the same road.

The framework based on MATLAB provides two simulation

environments in which to test algorithms: cuboids and 3D. Both

environments have their advantages and are useful for different

steps in the development process.

A. Cuboid Simulation Environment

In this environment, vehicles and other actors in the scenario

are represented as simple box shapes. This simulation

environment is useful for rapidly authoring scenarios,

generating detections using low-fidelity radar and camera

sensors, and testing controllers and tracking and sensor fusion

algorithms.[1]

Fig 1: Left: Graphical representation of road topology, and

vehicles and their trajectories, using the Driving Scenario

Designer app. Right: Visualization during simulation showing

moving actors, sensor range, and synthetic sensor data such as

detected lanes, detected vehicles, and estimated velocity of

detected vehicles.

Cuboid scenarios can be created by manually writing

MATLAB code or with the Driving Scenario Designer app,

which allows the user to:

• Create road and actor models using a drag-and-drop
interface.

• Configure vision and radar sensors mounted on the ego
vehicle, and use these sensors to simulate detections of
actors and lane boundaries in the scenario.

• Load driving scenarios representing European New Car
Assessment Programme (Euro NCAP®) test
protocols[2][3][4] and other prebuilt scenarios.

• Import OpenDRIVE® roads and lanes into a driving
scenario. The app supports OpenDRIVE format
specification version 1.4H.[5]

• Export synthetic sensor detections to MATLAB.

• Generate MATLAB code of the scenario and sensors,
and then programmatically modify the scenario and
import it back into the app for further simulation.

• Generate a Simulink® model from the scenario and
sensors, and use the generated models to test your sensor
fusion or vehicle control algorithms.

B. 3D Simulation Environment

With this option, scenarios are rendered using the Unreal

Engine® from Epic Games® and visualized using realistic

graphics. Synthetic high-fidelity sensor data can be generated

for radars, cameras, and lidars and used for testing path

planning, vehicle control, perception algorithms, and

perception-in-the-loop systems.[6]

Fig 2: 3D simulation environment with realistic graphics.

Fig 3: Example of lidar perception algorithm using synthetic

sensor data from the 3D simulation environment. This

algorithm creates and visualizes an accumulated map computed

using synthetic data.

C. Closed-Loop Simulations

After a perception system has been tested and designed, it can

be used as input to a control system that actually steers a

vehicle. In this case, rather than manually set up a trajectory,

the vehicle uses the perception system to drive itself. By

combining perception and control into a closed-loop system,

complex AD systems can be designed and tested.

Creating scenarios from logged data allows simulation of

realistic traffic conditions. In the next section we show how to

generate a virtual driving scenario from recorded vehicle data.

The scenario is generated from position information recorded

from a GPS sensor and recorded object lists processed from a

lidar sensor.

II. CREATION OF SCENARIOS FROM LOGGED DATA

In the proposed example, we create a virtual driving scenario

by generating a drivingScenario object containing data

that was recorded from a test vehicle and an OpenDRIVE file.

A complete description of the steps we have followed,

including code and logged data, is available.[7]

The OpenDRIVE file describes the road network of the area

where the data was recorded. The recorded vehicle data

includes:

• GPS data: Text file containing the latitude and longitude
coordinates of the ego vehicle at each timestamp.

• Lidar object list data: Text file containing the number of
non-ego actors and the positions of their centers, relative
to the ego vehicle, at each timestamp.

• Video data: MP4 file recorded from a forward-facing
monocular camera mounted on the ego vehicle.

To generate and simulate the driving scenario, the following

steps are proposed:

a. Explore recorded vehicle data.

b. Import OpenDRIVE road network into driving

scenario.

c. Add ego vehicle data from GPS to driving scenario.

d. Add non-ego actors from lidar object list to driving

scenario.

e. Simulate and visualize generated scenario.

www.embedded-world.eu

Fig 4: Diagram showing how recorded data has been used. The

driving scenario is created from the GPS, lidar object lists, and

OpenDRIVE files. The camera data is used to visualize the

original scenario and compare this data with the generated

scenario. The scenario route on the map can also be visualized

using the geoplayer tool available in the MATLAB

environment.

A. Exploring Recorded Vehicle Data

The positions of the ego vehicle were captured using a u-blox

GPS NEO-M8N® sensor. The GPS sensor was placed on the

center of the roof of the ego vehicle.

The positions of the non-ego actors were captured using a

Velodyne® VLP-16 lidar sensor with a range of 30 meters. The

VLP-16 sensor was placed on the roof of the ego vehicle at a

position and height that avoids having reflections generated by

the ego vehicle itself. The point cloud from the lidar sensor was

processed on the vehicle to detect objects and their positions

relative to the ego vehicle.

To help understand the original scenario, video from a

monocular camera was recorded as a reference. This video can

also be used to visually compare the original and generated

scenarios.

Fig 5: Using video recorded from the camera mounted on the

ego vehicle to visualize the preview of the urban traffic

scenario.

Though the sensor coverage area can be defined around the

entire ego vehicle, this example shows only the forward-

looking scenario.

B. Importing OpenDRIVE Road Network into Driving

Scenario

The road network data for generating the virtual scenario is

obtained from OpenStreetMap®. The OpenStreetMap data files

are converted to OpenDRIVE files and saved with

extension .xodr. The roadNetwork function is used to

import this road network data into a driving scenario:
scenario = drivingScenario;

openDRIVEFile = 'OpenDRIVEUrban.xodr';

roadNetwork(scenario,'OpenDRIVE', ...

 openDRIVEFile);

C. Adding Ego Vehicle Data from GPS to Generated

Scenario

The ego vehicle data is collected from the GPS sensor and

stored as a text file. The text file consists of three columns that

store the latitude, longitude, and timestamp values for the ego

vehicle. The structure we have used contains three fields

specifying the latitude, longitude, and timestamps.

Trajectory waypoints of the ego vehicle are extracted from the

recorded GPS coordinates.

The geodetic2enu function[8] is used to convert the raw

GPS coordinates to the local east-north-up Cartesian system.

The transformed coordinates define the trajectory waypoints of

the ego vehicle.

Fig 6: Scenario route map visualized with geographic player

function.[9]

Speed and heading angle values of the ego vehicle are computed

at each sensor data timestamp and used to create a trajectory for

the ego vehicle. The ego vehicle follows the trajectory at the

specified speed.

https://www.openstreetmap.org/

D. Adding Non-Ego Actors from Lidar Object Lists to

Generated Scenario

The non-ego actor data is collected from the lidar sensor and

stored as a text file. The text file consists of five columns that

store the actor IDs, x-positions, y-positions, z-positions, and

timestamp values, respectively. Non-ego actor data is imported

into the MATLAB workspace and structured as follows:

1. ActorID: Scenario-defined actor identifier, specified as a

positive integer.

2. Position: Position of actors relative to ego vehicle,

specified as an [x y z] real vector. Units are in meters.

3. Time: Timestamp of the sensor recording.

These values are used to compute the trajectory waypoints and

the speed of each non-ego actor at each timestamp. The

trajectory waypoints are computed relative to the ego vehicle.

Fig 7: Visualization of the ego vehicle and non-ego actors

imported into the generated scenario.

E. Simulating and Visualizing Generated Scenario

As a final step, the scenario can be simulated to visualize the

road topology and moving actors following their respective

trajectories. Animated scenario simulations can be compared

with the reference video recorded with the monocular camera.

Fig 8: Chase camera view when synthetic scenario is running.

III. PROGRAMMATIC CREATION OF SCENARIO VARIATIONS

Once a virtual scenario has been created, we can easily obtain

variations by programmatically changing actor parameters such

as speed, dimensions, and radar cross section.

In this section, we describe the following steps to create

programmatic variations of a driving scenario:

1. Export a MATLAB function that generates the MATLAB

code that is equivalent to the original scenario.

2. Modify the exported function to create variations of the

original scenario.

3. Call the function to generate

a drivingScenario object that represents the

scenario.

4. Import the scenario object into the Driving Scenario

Designer app to simulate the modified scenario or generate

additional scenarios. Alternatively, to simulate the

modified scenario in Simulink, import the object into a

Simulink model by using a Scenario Reader block.

Fig 9: Workflow for programmatical creation of scenario

variations.[10]

A. Export MATLAB Function of Scenario

After the scenario has been viewed and simulated, it can be

exported to the MATLAB command line by using the export

MATLAB function option available in the Driving Scenario

Designer app. The created function contains the following

information:

scenario: Roads and actors of the scenario

egoVehicle: Ego vehicle defined in the scenario

B. Modify Function to Create Scenario Variations

By modifying the code in the exported MATLAB function,

multiple variations of a single scenario can be generated. One

common option is to test the ego vehicle at different speeds. For

example, in the exported MATLAB function, suppose that the

speed of the ego vehicle is set to a constant value of 10 meters

per second (speed = 10). To generate varying ego vehicle

speeds, the speed variable can be converted into an input

argument of the function by:

• Including ego speed as an input argument

• Deleting the constant variable speed

https://localhost:31515/static/help/driving/ref/scenarioreader.html

www.embedded-world.eu

• Using egoSpeed instead of speed to compute the ego

vehicle trajectory

To produce additional variations, consider:

• Modifying the road and lane parameters to view the
effect on lane detections

• Modifying the trajectory or starting positions of the
vehicles

• Modifying the dimensions of the vehicles

C. Call Function to Generate Programmatic Scenarios

Using the modified function, a variation of the scenario can be

generated in which the environment and vehicles are described

with different parameter values.

D. Import Modified Scenario into Driving Scenario App

The drivingScenarioDesigner function can be used to

import the modified scenario into the app by specifying

the drivingScenario object as an input argument.

Import Modified Scenario into Simulink

The Scenario Reader block can import the modified scenario

into a Simulink model. This block reads the roads and actors

from either a scenario file saved from the app or

a drivingScenario variable saved to the MATLAB

workspace or the model workspace. Once the Scenario Reader

block has been added to a Simulink model and set to read the

desired scenario variable, simulation results can be visualized

with the Bird’s-Eye Scope[11] and synthetic sensor data can be

generated using radar detection generator or vision detection

generator blocks.

IV. CONCLUSIONS

We have described how to create scenarios from vehicle-logged

data and how to programmatically change scenario parameters

for agile creation of new scenarios for testing automated driving

functions under different traffic conditions.

REFERENCES

[1] https://mathworks.com/help/driving/ref/drivingscenariodesigner-
app.html

[2] European New Car Assessment Programme. Euro NCAP
Assessment Protocol - SA. Version 8.0.2. January 2018

[3] European New Car Assessment Programme. Euro NCAP AEB
C2C Test Protocol. Version 2.0.1. January 2018

[4] European New Car Assessment Programme. Euro NCAP LSS
Test Protocol. Version 2.0.1. January 2018

[5] Dupuis, Marius, et al. OpenDRIVE Format Specification. Revision
1.4, Issue H, Document No. VI2014.106. Bad Aibling, Germany:
VIRES Simulationstechnologie GmbH, November 4, 2015

[6] https://mathworks.com/help/driving/ug/3d-simulation-for-automated-
driving.html

[7] https://mathworks.com/help/driving/examples/scenario-generation-from-
recorded-vehicle-data.html

[8] https://mathworks.com/help/map/ref/geodetic2enu.html

[9] https://mathworks.com/help/driving/ref/geoplayer.html

[10] https://mathworks.com/help/driving/ug/create-driving-scenario-
variations-programmatically.html

[11] https://mathworks.com/help/driving/ref/birdseyescope.html

MATLAB and Simulink are registered trademarks of The

MathWorks, Inc. See mathworks.com/trademarks for a list of

additional trademarks. Other product or brand names may be

trademarks or registered trademarks of their respective

holders.

© 2020 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See mathworks.com/trademarks for a list of
additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.

https://localhost:31515/static/help/driving/ref/scenarioreader.html
https://de.mathworks.com/help/driving/ref/drivingscenariodesigner-app.html
https://de.mathworks.com/help/driving/ref/drivingscenariodesigner-app.html
https://de.mathworks.com/help/driving/ug/3d-simulation-for-automated-driving.html
https://de.mathworks.com/help/driving/ug/3d-simulation-for-automated-driving.html
https://de.mathworks.com/help/driving/examples/scenario-generation-from-recorded-vehicle-data.html
https://de.mathworks.com/help/driving/examples/scenario-generation-from-recorded-vehicle-data.html
https://mathworks.com/help/map/ref/geodetic2enu.html
https://mathworks.com/help/driving/ref/geoplayer.html
https://mathworks.com/help/driving/ug/create-driving-scenario-variations-programmatically.html
https://mathworks.com/help/driving/ug/create-driving-scenario-variations-programmatically.html
https://de.mathworks.com/help/driving/ref/birdseyescope.html?searchHighlight=bird%20eye%20scope&s_tid=doc_srchtitle

