@ embeddedworld=o=0

Exhibition&Conference
it's a smarter world

Creation and Variation of Traffic Scenarios for
Virtual Validation of Automated Driving Systems

Marco Roggero?, Shashank Sharma?, Will Tripp®, Mark Corless*, Sravan Kumar Chaganti®
1: The MathWorks GmbH, Aachen, Germany
2: The MathWorks GmbH, Ismaning, Germany
3: The MathWorks Inc, Natick (MA), USA
4: The MathWorks Inc, Novi (MI), USA
5: The MathWorks India Pvt Ltd, Hyderabad, INDIA

Abstract—Automated driving is getting massive attention from
industry, road authorities, and consumers. Tests are crucial for
convincing the market that autonomous vehicles are reliable and
secure. Virtual validation provides an efficient and systematic way
to test these systems. Such validation requires simulation
environments that closely resemble real-world environments and
include control algorithms, options for creating traffic scenarios,
sensor models, and representations of vehicle dynamics. In this
paper, we first show different ways of generating virtual driving
scenarios. These ways include designing virtual driving scenarios
using both scripts and graphical user interfaces, importing
scenarios from preexisting libraries, and generating scenarios
using data recorded from on-vehicle sensors. In a second section,
we explain how to programmatically create variations of an
existing scenario. The generated scenarios can be used in closed-
loop simulations to model and test controllers.

Keywords—Automated driving; Virtual

validation; Scenario generation

Driving scenario;

l. INTRODUCTION

Validation of autonomous driving (AD) systems requires,
besides road tests, computer-based simulations in which
perception and control algorithms are tested under many
different conditions. Such conditions include events such as
image reflections, changes in road marking colors, or the
presence of unexpected objects in the driving environment. If
compared with traditional automotive simulation methods,
simulations for AD need model not only the ego vehicle but also
the behavior of wvehicles, pedestrians, and other actors.
Simulations must also model sensors such as lidars, cameras,
and radars to enable the generation of synthetic sensor data. AD
systems cannot be developed without simulations.

In this paper we first describe different options for scenario
creation and simulation in MATLAB®. We then focus on two
examples for the cuboid simulation environment that show how
to generate a virtual scenario from recorded vehicle data and

how to programmatically change scenario parameters to
generate many different traffic conditions on the same road.
The framework based on MATLAB provides two simulation
environments in which to test algorithms: cuboids and 3D. Both
environments have their advantages and are useful for different
steps in the development process.

A. Cuboid Simulation Environment

In this environment, vehicles and other actors in the scenario
are represented as simple box shapes. This simulation
environment is useful for rapidly authoring scenarios,
generating detections using low-fidelity radar and camera
sensors, and testing controllers and tracking and sensor fusion
algorithms.[1]

i EEENS

L
20

Longitudinal Distance (m
o

=}

5

Fig 1. Left: Graphical representation of road topology, and
vehicles and their trajectories, using the Driving Scenario
Designer app. Right: Visualization during simulation showing
moving actors, sensor range, and synthetic sensor data such as
detected lanes, detected vehicles, and estimated velocity of
detected vehicles.

Cuboid scenarios can be created by manually writing
MATLAB code or with the Driving Scenario Designer app,
which allows the user to:

www.embedded-world.eu

e Create road and actor models using a drag-and-drop
interface.

e Configure vision and radar sensors mounted on the ego
vehicle, and use these sensors to simulate detections of
actors and lane boundaries in the scenario.

e Load driving scenarios representing European New Car
Assessment Programme (Euro NCAP®) test
protocols[2][3][4] and other prebuilt scenarios.

e Import OpenDRIVE® roads and lanes into a driving
scenario. The app supports OpenDRIVE format
specification version 1.4H.[5]

e Export synthetic sensor detections to MATLAB.

e Generate MATLAB code of the scenario and sensors,
and then programmatically modify the scenario and
import it back into the app for further simulation.

e Generate a Simulink® model from the scenario and
sensors, and use the generated models to test your sensor
fusion or vehicle control algorithms.

B. 3D Simulation Environment

With this option, scenarios are rendered using the Unreal
Engine® from Epic Games® and visualized using realistic
graphics. Synthetic high-fidelity sensor data can be generated
for radars, cameras, and lidars and used for testing path
planning, vehicle control, perception algorithms, and
perception-in-the-loop systems.[6]

Accumulated Point Cloud Map

k

Fig 3: Example of lidar perception algorithm using synthetic
sensor data from the 3D simulation environment. This
algorithm creates and visualizes an accumulated map computed
using synthetic data.

C. Closed-Loop Simulations

After a perception system has been tested and designed, it can
be used as input to a control system that actually steers a
vehicle. In this case, rather than manually set up a trajectory,
the vehicle uses the perception system to drive itself. By
combining perception and control into a closed-loop system,
complex AD systems can be designed and tested.

Creating scenarios from logged data allows simulation of
realistic traffic conditions. In the next section we show how to
generate a virtual driving scenario from recorded vehicle data.
The scenario is generated from position information recorded
from a GPS sensor and recorded object lists processed from a
lidar sensor.

Il. CREATION OF SCENARIOS FROM LOGGED DATA

In the proposed example, we create a virtual driving scenario
by generating a drivingScenario object containing data
that was recorded from a test vehicle and an OpenDRIVE file.
A complete description of the steps we have followed,
including code and logged data, is available.[7]
The OpenDRIVE file describes the road network of the area
where the data was recorded. The recorded vehicle data
includes:

e GPS data: Text file containing the latitude and longitude

coordinates of the ego vehicle at each timestamp.

o Lidar object list data: Text file containing the number of
non-ego actors and the positions of their centers, relative
to the ego vehicle, at each timestamp.

e Video data: MP4 file recorded from a forward-facing
monocular camera mounted on the ego vehicle.

To generate and simulate the driving scenario, the following
steps are proposed:
Explore recorded vehicle data.

Import OpenDRIVE road network into driving
scenario.

Add ego vehicle data from GPS to driving scenario.

Add non-ego actors from lidar object list to driving
scenario.

e. Simulate and visualize generated scenario.

Test Vehicle
$»{ Video Data | Image Plot
»| GPsData »{ Map Plot
l (Geoplayer) ==
- Lidar Data N Driving
7| (Object Lists) Scenario
Plot
Driving
Scenario
BB Driving
pen l3p| Scenario =
(Road Network) Chase Plot .

Fig 4: Diagram showing how recorded data has been used. The
driving scenario is created from the GPS, lidar object lists, and
OpenDRIVE files. The camera data is used to visualize the
original scenario and compare this data with the generated
scenario. The scenario route on the map can also be visualized
using the geoplayer tool available in the MATLAB
environment.

A. Exploring Recorded Vehicle Data

The positions of the ego vehicle were captured using a u-blox
GPS NEO-MB8N® sensor. The GPS sensor was placed on the
center of the roof of the ego vehicle.

The positions of the non-ego actors were captured using a
Velodyne® VLP-16 lidar sensor with a range of 30 meters. The
VLP-16 sensor was placed on the roof of the ego vehicle at a
position and height that avoids having reflections generated by
the ego vehicle itself. The point cloud from the lidar sensor was
processed on the vehicle to detect objects and their positions
relative to the ego vehicle.

To help understand the original scenario, video from a
monocular camera was recorded as a reference. This video can
also be used to visually compare the original and generated
scenarios.

Fig 5:Using video recorded from the camera mounted on the
ego vehicle to visualize the preview of the urban traffic
scenario.

Though the sensor coverage area can be defined around the
entire ego vehicle, this example shows only the forward-
looking scenario.

B. Importing OpenDRIVE Road Network into Driving
Scenario

The road network data for generating the virtual scenario is
obtained from OpenStreetMap®. The OpenStreetMap data files
are converted to OpenDRIVE files and saved with
extension . xodr. The roadNetwork function is used to
import this road network data into a driving scenario:
scenario = drivingScenario;
openDRIVEFile = 'OpenDRIVEUrban.xodr';
roadNetwork (scenario, 'OpenDRIVE',
openDRIVEFile) ;

C. Adding Ego Vehicle Data from GPS to Generated
Scenario

The ego vehicle data is collected from the GPS sensor and
stored as a text file. The text file consists of three columns that
store the latitude, longitude, and timestamp values for the ego
vehicle. The structure we have used contains three fields
specifying the latitude, longitude, and timestamps.

Trajectory waypoints of the ego vehicle are extracted from the
recorded GPS coordinates.
The geodetic2enu function[8] is used to convert the raw
GPS coordinates to the local east-north-up Cartesian system.
The transformed coordinates define the trajectory waypoints of
the ego vehicle.

4] Geographic Pla [=[®][=]

——
A e —
% ing ne
o) RV
°a, ~
%
Srinagar 3;)
Colony e
“
® Surya Nagar
'»oﬂ
o
=
Y Marg
gessne
jagutta S
nction " .‘.‘459! Durga Nagar
- ,“4!!——9"”’ o)
o g ’\“\\
g o
Dwaraka Nagar
50 m
e DwarakapuEsri, HERE, Garmin, NGA, USGS

Fig 6: Scenario route map visualized with geographic player
function.[9]

Speed and heading angle values of the ego vehicle are computed
at each sensor data timestamp and used to create a trajectory for
the ego vehicle. The ego vehicle follows the trajectory at the
specified speed.

www.embedded-world.eu

https://www.openstreetmap.org/

D. Adding Non-Ego Actors from Lidar Object Lists to
Generated Scenario

The non-ego actor data is collected from the lidar sensor and

stored as a text file. The text file consists of five columns that

store the actor IDs, x-positions, y-positions, z-positions, and

timestamp values, respectively. Non-ego actor data is imported

into the MATLAB workspace and structured as follows:

1. ActorID: Scenario-defined actor identifier, specified as a
positive integer.

2. Position: Position of actors relative to ego vehicle,
specified as an [x y z] real vector. Units are in meters.

3. Time: Timestamp of the sensor recording.

These values are used to compute the trajectory waypoints and
the speed of each non-ego actor at each timestamp. The
trajectory waypoints are computed relative to the ego vehicle.

120
Imported Road Network

Lanes
15| Ego Vehicke

IIl. PROGRAMMATIC CREATION OF SCENARIO VARIATIONS

Once a virtual scenario has been created, we can easily obtain

variations by programmatically changing actor parameters such

as speed, dimensions, and radar cross section.

In this section, we describe the following steps to create

programmatic variations of a driving scenario:

1. Export a MATLAB function that generates the MATLAB
code that is equivalent to the original scenario.

2. Modify the exported function to create variations of the
original scenario.

3. Call the function to generate
adrivingScenario object that represents the
scenario.

4. Import the scenario object into the Driving Scenario
Designer app to simulate the modified scenario or generate
additional scenarios. Alternatively, to simulate the
modified scenario in Simulink, import the object into a
Simulink model by using a Scenario Reader block.

I A ctor 1
I Actor 2
110 | [Actor 3
I ctor 4
I Actor 5
105
£ 400 s
>
-
95 .

80
270 2756 280 285 290 295 300 305 310 3156 320

X (m)

Fig 7: Visualization of the ego vehicle and non-ego actors
imported into the generated scenario.

E. Simulating and Visualizing Generated Scenario

As a final step, the scenario can be simulated to visualize the
road topology and moving actors following their respective
trajectories. Animated scenario simulations can be compared
with the reference video recorded with the monocular camera.

Fig 8: Chase camera view when synthetic scenario is running.

Build scenario

Export
MATLAB
function

MATLAB

Modify function

Generate drivingscenario object

Simulink

Import object using
Scenario Reader block

-l

Import object into app

Fig 9: Workflow for programmatical creation of scenario
variations.[10]

A. Export MATLAB Function of Scenario

After the scenario has been viewed and simulated, it can be
exported to the MATLAB command line by using the export
MATLAB function option available in the Driving Scenario
Designer app. The created function contains the following
information:

scenario: Roads and actors of the scenario
egoVehicle: Ego vehicle defined in the scenario

B. Modify Function to Create Scenario Variations

By modifying the code in the exported MATLAB function,
multiple variations of a single scenario can be generated. One
common option is to test the ego vehicle at different speeds. For
example, in the exported MATLAB function, suppose that the
speed of the ego vehicle is set to a constant value of 10 meters
per second (speed = 10). To generate varying ego vehicle
speeds, the speed variable can be converted into an input
argument of the function by:

¢ Including ego speed as an input argument

o Deleting the constant variable speed

https://localhost:31515/static/help/driving/ref/scenarioreader.html

e Using egoSpeed instead of speed to compute the ego
vehicle trajectory

To produce additional variations, consider:

e Modifying the road and lane parameters to view the
effect on lane detections

e Modifying the trajectory or starting positions of the
vehicles

e Modifying the dimensions of the vehicles

C. Call Function to Generate Programmatic Scenarios

Using the modified function, a variation of the scenario can be
generated in which the environment and vehicles are described
with different parameter values.

D. Import Modified Scenario into Driving Scenario App

The drivingScenarioDesigner function can be used to
import the modified scenario into the app by specifying
the drivingScenario object as an input argument.

Import Modified Scenario into Simulink

The Scenario Reader block can import the modified scenario
into a Simulink model. This block reads the roads and actors
from either a scenario file saved from the app or
adrivingScenario variable saved to the MATLAB
workspace or the model workspace. Once the Scenario Reader
block has been added to a Simulink model and set to read the
desired scenario variable, simulation results can be visualized
with the Bird’s-Eye Scope[11] and synthetic sensor data can be
generated using radar detection generator or vision detection
generator blocks.

IV. CONCLUSIONS

We have described how to create scenarios from vehicle-logged
data and how to programmatically change scenario parameters
for agile creation of new scenarios for testing automated driving
functions under different traffic conditions.

REFERENCES

[1] https://mathworks.com/help/driving/ref/drivingscenariodesigner-
app.html

[2] European New Car Assessment Programme. Euro NCAP
Assessment Protocol - SA. Version 8.0.2. January 2018

[3] European New Car Assessment Programme. Euro NCAP AEB
C2C Test Protocol. Version 2.0.1. January 2018

[4] European New Car Assessment Programme. Euro NCAP LSS
Test Protocol. Version 2.0.1. January 2018

[5] Dupuis, Marius, et al. OpenDRIVE Format Specification. Revision
1.4, Issue H, Document No. VI2014.106. Bad Aibling, Germany:
VIRES Simulationstechnologie GmbH, November 4, 2015

[6] https://mathworks.com/help/driving/ug/3d-simulation-for-automated-
driving.html

[7] https://mathworks.com/help/driving/examples/scenario-generation-from-
recorded-vehicle-data.html

© 2020 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See mathworks.com/trademarks for a list of

[8] https://mathworks.com/help/map/ref/geodetic2enu.html
[9] https://mathworks.com/help/driving/ref/geoplayer.html

[10] https://mathworks.com/help/driving/ug/create-driving-scenario-
variations-programmatically.html

[11] https://mathworks.com/help/driving/ref/birdseyescope.html

MATLAB and Simulink are registered trademarks of The
MathWorks, Inc. See mathworks.com/trademarks for a list of
additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective
holders.

www.embedded-world.eu

additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.

https://localhost:31515/static/help/driving/ref/scenarioreader.html
https://de.mathworks.com/help/driving/ref/drivingscenariodesigner-app.html
https://de.mathworks.com/help/driving/ref/drivingscenariodesigner-app.html
https://de.mathworks.com/help/driving/ug/3d-simulation-for-automated-driving.html
https://de.mathworks.com/help/driving/ug/3d-simulation-for-automated-driving.html
https://de.mathworks.com/help/driving/examples/scenario-generation-from-recorded-vehicle-data.html
https://de.mathworks.com/help/driving/examples/scenario-generation-from-recorded-vehicle-data.html
https://mathworks.com/help/map/ref/geodetic2enu.html
https://mathworks.com/help/driving/ref/geoplayer.html
https://mathworks.com/help/driving/ug/create-driving-scenario-variations-programmatically.html
https://mathworks.com/help/driving/ug/create-driving-scenario-variations-programmatically.html
https://de.mathworks.com/help/driving/ref/birdseyescope.html?searchHighlight=bird%20eye%20scope&s_tid=doc_srchtitle

