クイックスタートガイド

MATLAB によるディープラーニング

Deep Learning Toolbox™ はディープ ニューラルネットワークの構築、学習および検証を行うためのビルトイン機能を提供します。 このレファレンスでは、一般的な使用例を紹介します。 その他の例については、ドキュメンテーションを参照してください。

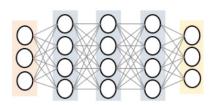
アーキテクチャの選択

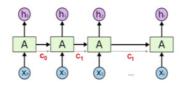
畳み込みニューラルネットワーク (CNN)

- イメージデータ:分類, 検出
- ・ 一般的な層:
 - 畳み込み層
 - 最大プーリング層
 - ReLU層
 - ・ バッチ正規化層
- ゼロからの学習、もしくは学習済み ネットワークを用いた転移学習が可能

長・短記憶 (LSTM) ネットワーク

- 逐次データ: 時系列予測、信号分類、 テキスト予測
- ・ 一般的な層:
 - LSTM 層
 - 双方向LSTM (BiLSTM) 層
- 回帰または分類のタスクを実行





ディープ ネットワーク デザイナー アプリ を用いてネットワークの対話的作成、評価ができます

学習済みネットワーク

ネットワークのインポート

モデルや層をエクスポートするための関数群を このツールボックスは提供します。

GitHub and File Exchange をご覧ください。

層のインポート	<pre>importCaffeLayers importKerasLayers</pre>
ネットワークのインポ ート	importCaffeNetwork importKerasNetwork
エクスポート	exportONNXNetwork

学習済みモデル

アドオン エクスプローラーから以下のコマンドを使っ てネットワークをインポートできます

alexnet	vgg19	inceptionv3
googlenet	resnet50	squeezenet
vgg16	resnet101	

学習オプション

学習オプション

実行環境	並列、GPU、複数 GPU、 auto (既定の設定)
MaxEpochs	1エポックとは学習デー タセット全体を1度使う ことです
MiniBatchSize	勾配計算と重み更新用 の学習データのサブセッ ト
InitialLearnRate	大きな初期学習率は学 習を速めますが、発散す る可能性があります
LearnRateSchedule	係数に従って学習率を 時間とともに下げます
ValidationData	学習中に検証を実施
ValidationPatience	精度に変化が一定期間 見られなければ学習を 停止(時間の節約)

検証

インターフェイス

predict 各クラスへの所属確率を返す classify ラベル及び各クラスへの所属

確率を返す

[Ypred,scores] = classify(net,X);

状態

ネットワークの状態は確認、更新が可能です:

predictAndUpdateState
classifyAndUpdateState

可視化

trainingOptions から検証と可視化の

種類を指定することができます

Plots: 進行状況を可視化

Verbose: true に設定することで各エポックの

学習の進行状況を表示

VerboseFrequency: 表示の頻度

OutputFcn: カスタム関数

CheckpointPath: エポック毎にモデルを保存

するディレクトリ

パフォーマンスの改善

モデルパフォーマンスの改善はタスクとデータに依 存します。

ネットワークのアーキテクチャ:

- 特定分野の専門家が作成した学習済みモデルを 用いる
- 層を更新し、パラメーターを調整する

データの用意:

- データを加える
- ・ 学習/検証/テスト用に分ける
- データの正規化
- 外れ値を除去
- ・ クラス間のバランスをとる(重みづけ)

ハイパーパラメータの調整:

- ベイズ最適化を用いて学習パラメータを調整
- 問題を optimizable Variable で設定
- モデルとオプションを呼ぶ関数を書く
- bayesopt で最適化を実行

obj = bayesopt(ObjFcn,OptVars,...);

ディープラーニングに関する詳細: mathworks.com/solutions/deep-learning

mathworks.com