

QUICK START GUIDE

Problem-Based Optimization with Optimization Toolbox™

Use a natural syntax for defining and solving optimization problems, least squares problems, and systems of nonlinear equations.

1. Define Problem

Following the *problem-based workflow*, first create an optimization problem with **optimproblem** to hold the objective, constraints, and associated variables. Create an **eqnproblem** when solving a system of nonlinear equations.

Examples:

```
assignmentProb = optimproblem
responseProb = optimproblem
initialStateProb = eqnproblem
```

2. Define Variables

Create optimization variables with **optimvar**. Set display name and optional dimensions, bounds, and type. Index with integers or character strings.

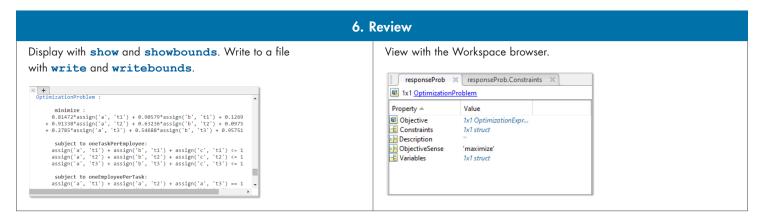
Examples:

x = optimvar("x"); y = optimvar("y"); employees = ["a","b","c"]; tasks = ["t1","t2","t3"];

assign = optimvar("assign",employees,tasks,"LowerBound",0,"UpperBound",1,"Type","integer")

3. Define Expressions to Use in Objective, Constraints, and Equations		
Directly specify an OptimizationExpression with <i>supported operations</i> .	Use any MATLAB [®] function by converting it to an optimization expression with fcn2optimexpr .	
<pre>Examples: response = -3*(y - x.^3 - x).^2 - (x - 4/3).^2; totalCost = sum(sum(cost.*assign)); sumByEmployee = sum(assign,2); sumByTask = sum(assign,1);</pre>	<pre>Examples: a = 4; xyfcn = @(x,y,a)gamma(y)*a*x.^2; xyexpr = fcn2optimexpr(xyfcn,x,y,a);</pre>	

4. Define Objective	
Set the <i>sense</i> of the optimization. Set the <i>objective function</i> with a scalar OptimizationExpression .	<pre>Examples: responseProb.ObjectiveSense = "maximize"; responseProb.Objective = response;</pre>
	assignmentProb.ObjectiveSense = "minimize"; assignmentProb.Objective = totalCost;


5. Define Constraints and Equations

Combine **OptimizationExpressions** with a relational operator to specify an **OptimizationConstraint** or an **OptimizationEquality**. Assign to a problem.

Examples:

responseProb.Constraints.ellipse = x.^2/2 + y.^2/4 <= 1; responseProb.Constraints.xyconstr = xyexpr >= 1;

```
assignmentProb.Constraints.oneTaskPerEmployee = sumByTask <= 1;
assignmentProb.Constraints.oneEmployeePerTask = sumByEmployee == 1;
```


7. Solve and Analyze	
Solve the problem, providing an initial point for nonlinear problems. The solve function returns solution values, objectives values, the reason the problem stopped, and more. Example: x0.x = 0; x0.y = 0; [sol,fval,exitflag] = solve(responseProb,x0) Sol = struct with fields: x: 0.8883 y: 1.5563 fval = -0.2013 exitflag = OptimalSolution	Solve with optimization options. Example: o = optimoptions(assignProb,"MaxTime",10); sol = solve(assignmentProb,"Options",0) Do More • Use evaluate and infeasibility to analyze results • Interpret and improve results • Convert to solver-based form with prob2struct

Learn more: *mathworks.com/help/optim*

mathworks.com

© 2021 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.