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Closed-Loop Transfer Function: 2"-Order Dynamic System With Numerator Dynamics
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« Some Observations

— When a physical system exhibits a natural oscillatory
behavior, a 15-order model (or even a cascade of
several 15-order models) cannot provide the desired
response. The simplest model that does possess that
possibility is the 2"d-order dynamic system model.

— This system is very important in control design.

 System specifications are often given assuming that
the system is 2"9 order.

 For higher-order systems, we can often use
dominant pole technigues to approximate the system
with a 2"d-order transfer function.
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« Damping ratio C clearly controls oscillation; £ < 1 is required
for oscillatory behavior.

« The undamped case (€ = 0) is not physically realizable (total
absence of energy loss effects) but gives us, mathematically, a
sustained oscillation at frequency o,

 Natural oscillations of damped systems are at the damped
natural frequency w4, and not at ..
n Wy = W, \/1_ C.>2

 In hardware design, an optimum value of £ = 0.64 is often
used to give maximum response speed without excessive
oscillation.

« Undamped natural frequency o, Is the major factor in response
speed. For a given C response speed is directly proportional to
O,
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« Thus, when 2"d-order components are used in feedback
system design, large values of o, (small lags) are desirable
since they allow the use of larger loop gain before stability
limits are encountered.

 For frequency response, a resonant peak occurs for £ <
0.707. The peak frequency Is w, and the peak amplitude
ratio depends only on C.

, = O, J1-2¢7 peak amplitude ratio = K =
. 26y1-C
« Bandwidth

— The bandwidth is the frequency where the amplitude
ratio drops by a factor of 0.707 = -3dB of its gain at zero
or low-frequency.
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— For a 1t -order system, the bandwidth is equal to 1/z.

— The larger (smaller) the bandwidth, the faster (slower) the
step response.

— Bandwidth is a direct measure of system susceptibility to
noise, as well as an indicator of the system speed of
response.

— For a 2"-order system:

BW = o, \[1- 202 +[2— 402 + 4C°

— As ¢ varies from 0 to 1, BW varies from 1.55w,, to
0.64w,. Foravalue of {=0.707, BW = ®,. For most
design considerations, we assume that the bandwidth of a
2nd-order all pole system can be approximated by o,..
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 Experimental Determination of € and m,

— ¢ and o, can be obtained in a number of ways from step
or frequency-response tests.

— For an underdamped second-order system, the values of
¢ and , may be found from the relations:

. ]
M, =e """ = (= .
e
+1
V[Ioge(Mp)j
T=2—Tc 0y =0,1-C° = o, = Oy __ 2%
Wy 1-¢° T1-¢°
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— Logarithmic Decrement o is the natural logarithm of the
ratio of two successive amplitudes.
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— If several cycles of oscillation appear in the record, it is
more accurate to determine the period T as the average
of as many distinct cycles as are available rather than
from a single cycle.

— If a system is strictly linear and second-order, the value
of n i1s immaterial; the same value of C will be found for
any number of cycles. Thus if C is calculated for, say, n
=1, 2, 4, and 6 and different numerical values of  are
obtained, we know that the system is not following the
postulated mathematical model.

« For over-damped systems (£ > 1.0), no oscillations exist,
and the determination of  and m,, becomes more difficult.
Usually it is easier to express the system response in terms

of two time constants.
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— For the over-damped step response:
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— To find t, and 1, from a step-function response curve, we
may proceed as follows:

- Define the percent incomplete response R; as:

R, 2 (1— to leO

Kq IS

» Plot R; on a logarithmic scale versus time t on a linear
scale. This curve will approach a straight line for large
t if the system is second-order. Extend this line back
to t = 0, and note the value P, where this line intersects
the R scale. Now, 7, Is the time at which the straight-
line asymptote has the value 0.368P;,.
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« Now plot on the same graph a new curve which is the
difference between the straight-line asymptote and R,;.
If this new curve Is not a straight line, the system is not
second-order. If it is a straight line, the time at which
this line has the value 0.368(P,-100) is numerically
equal to t,.

 Frequency-response methods may also be used to find
T, and 1,.
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Frequency-
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« Dynamic System Exercise

— An underdamped 2"d-order system model has the following
transfer function: Ko;

G(s) =
©) % +2¢m, S+

S;, =—CO, & io)n\/l—g2

— Part 1:

» Using the properties and formulas for 2"d-order systems,
discuss the relationships between the step-response-
parameters rise time, settling time, and overshoot, and
the frequency-response-parameters bandwidth and peak
amplitude as the model parameters vary. Use plots as
needed In your presentation.
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 Suggestion: Pick a base system. Generate 4 families
of plots

— 4 constant, vary o
— ¢ constant, vary oy
— o, constant, vary ¢
— { constant, vary o,

» Show both time-response and frequency-response
plots. Include discussion.
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— Part 2:

* Investigate the effects on the time (step) response
and frequency response of adding a real pole or a
real zero to the 2"-order transfer function. The pole
and zero are added separately. In classical deign
using root-locus or frequency-response techniques,
real poles and zeros are added (lead, lag, lead-lag
controllers) to modify system dynamics, and so it Is
Important to have a good understanding of these
effects. Use plots as needed in your presentation.
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 Suggestion: Pick a base second-order system.

— Add a negative real pole (s + p) to the transfer
function and move the pole from the left towards
the origin and describe its effect on the time-
response and frequency-response plots.

— Add a negative real zero (s + z) to the transfer
function and move the zero from the left towards
the origin and describe its effect on the time-
response and frequency-response plots.
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— Part 3:

« Now add a positive real zero to your base second-
order system and evaluate the step response for the
system. Explain your observations.

 Physically, what might cause a transfer function to
have a right-half plane zero?
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 Problem Solution

®’ o, +6°
G(S): 2 2 — 2 2 2
S°+20w S+, S +205+(w;+0°)
— Base System
Y 2 c=1 =

G(s) =

— Effects of o:

* 0y =1,6=[05,1, 5]
— Effects of oy:

e 6=1,0,=[0.5, 1, 5]
— Effects of o,;:

¢« {=0.707, o,=[0.5V2, V2, 5\2]
— Effects of _:

« ,=12,{=1[0.866, 0.707, 0.5]

f
0.7

§% 4+ 25+ 2 0y =1 Q
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« Effect of an Additional LHP Pole

2 2
®° o, +G

G(s) = n _

2 +20m S+ 0> S°+205+ (0’ +0°)

— Base System

G(S)— 2 c=1 (DnI\/z
¢ =0.707

2
S°+25+2 o, =1
— Additional Pole

2

G(s) =

1
pst+(2p+1)sZ+(2p+2)s+2
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« Effect of a LHP Zero

®’ B o, +6°
G(s) = 2 2 — 2 2 2
S°+2Cw S+, S +205+(w;+0°)

— Base System

G(s)=_, - o=1  o,=v2
$? 42542 o, =1 ¢ =0.707
— Add a Zero
2(zs+1)
GS: =
() (24254 2) z=[0,0.2, 1, 2]
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« Effect of a RHP Zero

G(s) — ®° B ®; +6°
(S)_ 2 2 2 2 2
S°+2Cw S+, S +205+(w;+0°)

— Base System
G(s)= - c=1 o,=v2

S° +25+2 (Dd:]. CZO?O?
— Add a RHP Zero

2
G(s) =
(S +25+2)
G,(s)= 2 + 25 = (25+2) G(s) plus its derivative
(S°+25+2) (S°+2s+2) (S°+2s+2)
G,(S) = 2 S _ (=2s+2) G(s) minus its derivative

(s2+25+2) (s°+25+2) (s°+25+2)
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