
2nd-Order Dynamic System Response K. Craig     1

Time Response & Frequency Response

of a 
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Frequency Response

of a

2nd-Order System
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Frequency Response

of a

2nd-Order System
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Frequency Response

of a

2nd-Order System
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• Some Observations

– When a physical system exhibits a natural oscillatory 

behavior, a 1st-order model (or even a cascade of 

several 1st-order models) cannot provide the desired 

response.  The simplest model that does possess that 

possibility is the 2nd-order dynamic system model.

– This system is very important in control design.

• System specifications are often given assuming that 

the system is 2nd order.

• For higher-order systems, we can often use 

dominant pole techniques to approximate the system 

with a 2nd-order transfer function.
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• Damping ratio  clearly controls oscillation;  < 1 is required 

for oscillatory behavior.

• The undamped case ( = 0) is not physically realizable (total 

absence of energy loss effects) but gives us, mathematically, a 

sustained oscillation at frequency n.  

• Natural oscillations of damped systems are at the damped 

natural frequency d, and not at n.

• In hardware design, an optimum value of  = 0.64 is often 

used to give maximum response speed without excessive 

oscillation.

• Undamped natural frequency n is the major factor in response 

speed.  For a given  response speed is directly proportional to 

n. 

2

d n 1   



2nd-Order Dynamic System Response K. Craig     9

• Thus, when 2nd-order components are used in feedback 

system design, large values of n (small lags) are desirable 

since they allow the use of larger loop gain before stability 

limits are encountered.

• For frequency response, a resonant peak occurs for  < 

0.707.  The peak frequency is p and the peak amplitude 

ratio depends only on .

• Bandwidth

– The bandwidth is the frequency where the amplitude 

ratio drops by a factor of 0.707 = -3dB of its gain at zero 

or low-frequency.
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– For a 1st -order system, the bandwidth is equal to   1/.

– The larger (smaller) the bandwidth, the faster (slower) the 

step response.

– Bandwidth is a direct measure of system susceptibility to 

noise, as well as an indicator of the system speed of 

response.

– For a 2nd-order system:

– As  varies from 0 to 1, BW varies from 1.55n to 

0.64n.  For a value of  = 0.707, BW = n.  For most 

design considerations, we assume that the bandwidth of a 

2nd-order all pole system can be approximated by n.

2 2 4

nBW 1 2 2 4 4        
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Time-Response Specifications vs. Pole-Location Specifications
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• Experimental Determination of  and n

–  and n can be obtained in a number of ways from step 

or frequency-response tests.

– For an underdamped second-order system, the values of 

 and n may be found from the relations:
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– Logarithmic Decrement  is the natural logarithm of the 

ratio of two successive amplitudes.
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– If several cycles of oscillation appear in the record, it is 

more accurate to determine the period T as the average 

of as many distinct cycles as are available rather than 

from a single cycle.

– If a system is strictly linear and second-order, the value 

of n is immaterial; the same value of  will be found for 

any number of cycles.  Thus if  is calculated for, say, n

= 1, 2, 4, and 6 and different numerical values of  are 

obtained, we know that the system is not following the 

postulated mathematical model.

• For over-damped systems ( > 1.0), no oscillations exist, 

and the determination of  and n becomes more difficult.  

Usually it is easier to express the system response in terms 

of two time constants.
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– For the over-damped step response:

– where
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– To find 1 and 2 from a step-function response curve, we 

may proceed as follows:

• Define the percent incomplete response Rpi as:

• Plot Rpi on a logarithmic scale versus time t on a linear 

scale.  This curve will approach a straight line for large 

t if the system is second-order.  Extend this line back 

to t = 0, and note the value P1 where this line intersects 

the Rpi scale.  Now, 1 is the time at which the straight-

line asymptote has the value 0.368P1.

o
pi
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q
R 1 100
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• Now plot on the same graph a new curve which is the 

difference between the straight-line asymptote and Rpi.  

If this new curve is not a straight line, the system is not 

second-order.  If it is a straight line, the time at which 

this line has the value 0.368(P1-100) is numerically 

equal to 2.

• Frequency-response methods may also be used to find 

1 and 2.
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Frequency-

Response Test of 

Second-Order 

Systems
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• Dynamic System Exercise

– An underdamped 2nd-order system model has the following 

transfer function:

– Part 1:

• Using the properties and formulas for 2nd-order systems, 

discuss the relationships between the step-response-

parameters rise time, settling time, and overshoot, and 

the frequency-response-parameters bandwidth and peak 

amplitude as the model parameters vary.  Use plots as 

needed in your presentation.
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• Suggestion: Pick a base system.  Generate 4 families 

of plots

– ωd constant, vary σ

– σ constant, vary ωd

– ωn constant, vary ζ

– ζ constant, vary ωn

• Show both time-response and frequency-response 

plots.  Include discussion.
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– Part 2:

• Investigate the effects on the time (step) response 

and frequency response of adding a real pole or a 

real zero to the 2nd-order transfer function.  The pole 

and zero are added separately.  In classical deign 

using root-locus or frequency-response techniques, 

real poles and zeros are added (lead, lag, lead-lag 

controllers) to modify system dynamics, and so it is 

important to have a good understanding of these 

effects.  Use plots as needed in your presentation.
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• Suggestion:  Pick a base second-order system.

– Add a negative real pole (s + p) to the transfer 

function and move the pole from the left towards 

the origin and describe its effect on the time-

response and frequency-response plots.

– Add a negative real zero (s + z) to the transfer 

function and move the zero from the left towards 

the origin and describe its effect on the time-

response and frequency-response plots.
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– Part 3:

• Now add a positive real zero to your base second-

order system and evaluate the step response for the 

system.  Explain your observations.

• Physically, what might cause a transfer function to 

have a right-half plane zero?
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• Problem Solution

– Base System

– Effects of σ:

• ωd = 1, σ = [0.5, 1, 5]

– Effects of ωd:

• σ = 1, ωd = [0.5, 1, 5]

– Effects of ωn:

• ζ = 0.707,  ωn = [0.5√2, √2, 5√2]

– Effects of ζ:

• ωn = √2, ζ = [0.866, 0.707, 0.5]
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• Effect of an Additional LHP Pole

– Base System

– Additional Pole
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• Effect of a LHP Zero

– Base System

– Add a Zero
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• Effect of a RHP Zero

– Base System

– Add a RHP Zero
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