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Electrical Systems:
Modeling, Analysis, Measurement, & Control
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Electrical System Topics

• Part 2

– Capacitance

• Physical Model

• Mathematical Model

• Impulse and Step Response

• Frequency Response

• Important Uses

– RC Circuit (Low-Pass Filter – Anti-Aliasing 

Filter) System Investigation

Capacitor
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The battery 

causes electrons 

to be moved from 

the top plate of 

the capacitor to 

the bottom plate.

V+Q on top

-Q on bottom

Q CV

electron flow
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Capacitors
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The Capacitance Element

– This is another fundamental electrical element.  Like a 

resistor, it is intentionally or unintentionally present in 

every real electrical system.

– Two conductors separated by a nonconducting medium 

(insulator or dielectric), that allows an electrostatic field to 

be established without allowing charge to flow between the 

two pieces of conducting material, form a capacitor.

– A capacitor stores electrical energy in its electrostatic field.  

In a pure and ideal capacitor, all of the energy stored in a 

capacitor can be retrieved and used.

 
 

 

q coulombs
C farads

e volts

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– Charging a Capacitor

• Process of removing charge from one conductor and 

placing an equal amount on the other. 

• The net charge of a capacitor is always zero and the 

“charge on a capacitor” refers to the magnitude of the 

charge on either conductor.

– In a pure and ideal capacitance element, the numerical 

value of C is absolutely constant for all values of q or e. 

– Real capacitors exhibit some nonlinearity and are 

contaminated by the presence of resistance and/or 

inductance.
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• Energy Stored

– The pure and ideal capacitance stores in its electric field all the 

electrical energy supplied to it during the charging process and 

will give up all of this energy if completely discharged, say by 

connecting it to a resistor.

– The work done to transfer a charge dq through a potential 

difference e is (e)dq. The total energy stored by a charged 

capacitor is:

– This is true irrespective of how the final voltage or charge was 

built up.  

– There is no current “through” a capacitor; an equal amount of 

charge is taken from one plate and supplied to the other by 

way of the circuit external to the capacitor.

 
q q 2 2

0 0

q q Ce
e dq dq

C 2C 2

 
   

 
 
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Capacitance Element

 

q Ce

de
i C CDe

dt

i
(D) CD

e

i
i C(i )

e

C 90



 



  

  
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Approximate and Exact

Impulse Functions

If es =1.0 (unit step function), 

its derivative is the unit 

impulse function with a 

strength (or area) of one unit.

This “non-rigorous” approach 

does produce the correct result.
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The impulse function is explained by the 

figure, where we approximate the step function 

by a terminated ramp and then let the rise time 

of the ramp approach zero.  As we let the ramp 

get steeper and steeper, the magnitude of de/dt

approaches infinity, and its duration approaches 

zero, but the area under it will always be es. If 

es = 1 (a unit step function), its derivative is 

called the unit impulse function with an area or 

strength equal to one unit.  The step function is 

the integral of the impulse function, or 

conversely, the impulse function is the 

derivative of the step function.  When we 

multiply the impulse function by some number, 

we increase the “strength of the impulse”, but 

“strength” now means area, not height as it 

does for “ordinary” functions.  
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• A step input voltage produces a capacitor current of 

infinite magnitude and infinitesimal time duration.  Real 

physical quantities are limited to finite values.  

– A true (instant rising) step voltage cannot be achieved.

– A real capacitor has parasitic resistance and inductance 

which limit current and its rate of change.

– Thus, a real capacitor will exhibit a short-lived (but not 

infinitesimal) and large (but not infinite) current spike.

• Impulse functions appear whenever we try to differentiate 

discontinuous functions.
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– An impulse that has an infinite magnitude and zero 

duration is mathematical fiction and does not occur in 

physical systems.  If, however, the magnitude of a pulse 

input to a system is very large and its duration is very short 

compared to the system’s speed of response, then we can 

approximate the pulse input by an impulse function.  The 

impulse input supplies energy to the system in an 

infinitesimal time.

– The step response of a component or system is the time 

response to a step input of some magnitude.  The impulse 

response of a system is the derivative of the step response 

and is the time response to an impulse input of some 

strength. 
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Step Response Capacitor
de

i C CDe
dt

1
e i
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
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de
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Frequency Response (Steady- State)

Capacitor
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• Capacitors in Series and Parallel

– The total capacitance of capacitors connected in parallel is 

the sum of the individual capacitances.

– Capacitance is proportional to the area of the conducting 

plates.  Placing capacitors in parallel is like increasing the 

area of the capacitor plates.

– The total capacitance of capacitors connected in series is the 

reciprocal of the sum of the reciprocals of the individual 

capacitors.

– Capacitance is inversely proportional to the spacing between 

the conducting plates.  Placing capacitors in series is like 

increasing the separation between the capacitor plates.

total 1 2 nC C C C   

total 1 2 n

1 1 1 1

C C C C
   
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Will carry any current the 

source can produce until 

the wire burns up.

Short Circuit

Open Circuit
Will carry no current no 

matter how large the 

voltage is, unless arcing 

occurs.

Capacitor

at high frequency

Capacitor

at low frequency

Resistors behave the same at all frequencies. 

Capacitors do not.
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• Capacitor Usage

– Large capacitors are used in power supply circuits to store 

charge, or energy, for delivery at a later time.

– They are used to filter out a 60 Hz ripple.

– The function of a bypass capacitor is to unsure that the dc

component of a signal appears on some circuit element but 

that the ac component is shorted out or bypassed around the 

element.  They are used to prevent high-frequency noise on 

the dc power line in modern digital electronics from entering 

into the logic via the power leads.

– A blocking or coupling capacitor blocks the dc component of 

a signal from propagating to another section of a circuit while 

allowing ac signals to get through.
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– Capacitors are used in frequency discrimination, or timing,

circuits.  RC and LC networks are used to create shaped 

frequency responses.  

– Capacitors are used in integrating circuits for measuring 

charge or in analog-to-digital converters.

• Capacitor Properties

– In a capacitor consisting of two flat conductors separated 

by an insulator, capacitance is proportional to the area of 

the conductors and the dielectric constant, and inversely 

proportional to the spacing between the two conductors.  

Therefore to get large capacitance one needs large area, 

large dielectric constant, or small gap spacing.  All three 

are used in real capacitors.
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– Dielectric strength is an important parameter of the 

dielectric in a capacitor, i.e., how much voltage can be 

applied across it before it breaks down in some way and 

starts to conduct.  Some dielectrics are healing, i.e., after 

they break down and the discharge is terminated, the 

dielectric reforms and is essentially unchanged.

– One of the two conductors in any rolled or multilayer 

capacitor is the outer conductor while the other conductor 

is shielded by the outer one.  The outer conductor can pick 

up or transmit signals as an antenna and should be 

connected to ground.
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– Some leakage current will flow through the dielectric in 

any capacitor and this is expressed in terms of an 

equivalent resistance (106 to 1012 ohms).

– Some of the energy put into charging a capacitor is lost; it 

appears as heat in the dielectric.  There is dielectric loss of 

the capacitor and the amount increases with frequency and 

depends on the type of insulator.

– There are two time constants in a capacitive circuit.

• The energy stored in the electric field between the two 

plates and most of the energy stored in the polarization 

of the dielectric can be removed as fast as the RC time 

constant of the circuit will allow the capacitor to 

discharge.
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• Some of the polarization energy is released on a time 

scale determined by atomic processes in the material; 

this can have time constants measured in milliseconds to 

days.  Thus a large capacitor that has a highly polarized 

dielectric can be discharged and then left with its leads 

open; some time later, it is found that there is some 

voltage between the two terminals, as some of the 

energy stored in the polarization has been slowly 

returned to the electric field.

• Any real capacitor will have some parasitic inductance.  

Any capacitor will look inductive at a high enough 

frequency.  To have a capacitor that will operate from 

low to extremely high frequencies, use several 

capacitors in parallel.
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• Capacitor Specification

– Value

– Tolerance which gives the possible error in the nominal value 

of the capacitor.  In general, the tolerances on capacitors are 

large and frequently asymmetrical.

– Voltage Rating (short-term and working) is the maximum 

voltage that can be applied to a capacitor without breakdown.  

It depends on the dielectric thickness and material.

– Insulation resistance is a measure of the ohmic resistance of 

the dielectric layer of the capacitor.

– Dissipation or power factor is a measure of the energy loss in 

the capacitor due to resistive leakage and dielectric loss.



Electrical Systems K. Craig     24

– The quality factor, dependent on the measurement 

frequency, indicates the energy loss in a capacitor.  A near-

perfect capacitor, with no losses, has a quality factor 

approaching infinity.

– The properties of the dielectric, and hence the capacitance 

of a capacitor, will change as a function of temperature.  

The temperature coefficient will indicate this dependence.

– The voltage coefficient indicates how the capacitance of a 

capacitor decreases as the voltage increases.

– Aging specification indicates the changes in the capacitor 

as a function of time.

• Capacitor Markings

– Measure It!
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• Fixed Capacitor Types and Properties

– Two main classes of fixed capacitors: electrolytic and 

nonelectrolytic.

– Most electrolytic capacitors are polarized  and will have 

some markings to indicate which lead must be the positive 

one.

– The two main types of electrolytic capacitors are: 

Aluminum and Tantalum

• Aluminum electrolytic capacitors are the most common 

electrolytic capacitors in use.  They have capacitances 

ranging from 1 to 106 μF and in voltage ranges from 

100 to 700 V.
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• Tantalum electrolytic capacitors are smaller than 

aluminum for equivalent ratings.  They have better 

characteristics in all respects, cost more, and have 

longer life expectancy.  They have a capacitance range 

of 0.1 to 1000 μF and a voltage range of 3 to 150 V.

– Nonelectrolytic capacitors are made of a variety of new 

materials, e.g., polypropylene, polyimide, polystyrene, 

polycarbonate, polyester, paper, mica, glass, and ceramic. 
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Physical System for Investigation

RC Circuit

Electrical System

Cein eout

iin iout

R
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Physical Modeling

• Simplifying Assumptions

– Resistors and Capacitors are pure and ideal.

– Voltage sources are ideal and supply the intended voltage 

to the circuit no matter how much current (and thus power) 

this might require.

– Measuring devices are ideal and do not load the circuits by 

drawing any current.

C
ein eout

iR iout = 0

R
iC
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Model Parameter Identification

• Measure resistor and capacitor component values 

using the DMM.  Note tolerances.

• RC Circuit

– 15 kΩ nominal (5% tolerance), 14.986 kΩ measured

– 0.01 μF nominal, 9.85 nF = 0.00985 μF measured
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Mathematical Modeling

Cein eout

iin iout

R

outin

outin

ee RCD 1 R

ii CD 1

      
         

Apply to Physical Model

• KVL and KCL

• Constitutive Equations

• Capacitor

• Resistor

Complete

Mathematical Model
out in

out in

e e1 R

i iCD (RCD 1)

    
         
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Basic Component (R and C)

Equations

(Constitutive Equations)

in out
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de
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 



KCL R C out
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e Ke
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K 1
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1st-Order Linear

Constant-Coefficient ODE

General Form
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Preferred Approach:  Impedance + Voltage Divider

Impedance
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i
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Analogies
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out
out in

de
e Ke

dt
  

• The classical operator method of solution is a 

three-step procedure:

– Find the complimentary (homogeneous) solution for the 

equation with the input equal to zero.

– Find the particular solution with the input present.

– Get the complete solution, i.e., the sum of the 

complimentary and particular solutions, and evaluate 

the constants of integration in the complimentary 

solution by applying known initial conditions.

Analytical Solution
1st-Order, Linear, Constant-Coefficient ODE
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Step 1
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Constant C1 is determined from 

the initial condition once the 

complete solution is formed.
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2 2 2

tan( )

K
C

1

  
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Frequency Response
Steady-State Response of the System to an 

Input Sine Wave at a Particular Frequency

 out 2ss
e C Asin( t )   

ine Asin( t) 

The complimentary solution will decay to zero with 

time.  The particular solution is the steady-state 

solution.  The input is a sine wave and the steady-

state output is a sine wave with the same frequency, 

but with a frequency-dependent amplitude and a 

frequency-dependent phase angle. 
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MatLab / Simulink Numerical Solution
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• Plotting Numerical Data

– Engineers are well known for their ability to plot many curves of 

experimental data and to extract all sorts of significant facts 

from these curves.

– The better one understands the physical phenomena involved in 

a certain experiment, the better is one able to extract a wide 

variety of information from graphical displays of experimental 

data.

– Understand The Physical Processes Behind The Data!

– When data may be approximated by a straight line, the 

analytical relation is easy to obtain; but when almost any other 

functional variation (e.g., exponential, polynomial, complex 

logarithmic) is present, difficulties are usually encountered.

– It is convenient to try to plot data in such a form that a straight 

line will be obtained for certain types of functional relationships.
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Analytical Solution to a Step Input
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– This approach gives a more accurate value of  since the best 

line through all the data points is used rather than just two 

points, as in the 63.2% method.  Furthermore, if the data 

points fall nearly on a straight line, we are assured that the 

instrument is behaving as a first-order type.  If the data 

deviate considerably from a straight line, we know the 

system is not truly first order and a  value obtained by the 

63.2% method would be quite misleading.

– An even stronger verification (or refutation) of first-order 

dynamic characteristics is available from frequency-response 

testing.  If the system is truly first-order, the amplitude ratio 

follows the typical low- and high-frequency asymptotes 

(slope 0 and –20 dB/decade) and the phase angle approaches 

-90 asymptotically.
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• If these characteristics are present, the numerical value 

of  is found by determining  (rad/sec) at the 

breakpoint and using  = 1/break.  Deviations from the 

above amplitude and/or phase characteristics indicate 

non-first-order behavior. 
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Mathematical Analysis and Prediction
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• Time Constant 

– Time it takes the step response to reach 63% of the steady-

state value, Kein.

• Rise Time Tr = 2.2 

– Time it takes the step response to go from 10% to 90% of 

the steady-state value, Kein.

• Delay Time Td = 0.69 

– Time it takes the step response to reach 50% of the steady-

state value, Kein.

• Steady-State Value

– The steady-state value of the response is Kein and at 4

seconds (4 time constants), the response has reached 98% 

of the steady-state value; for all practical purposes, this is 

steady state.
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Semi-Log Paper

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

10 20 30 40 50 60 70 80 90 100
1.0 1.301 1.477 1.602 1.699 1.778 1.845 1.903

1.954

2.0

log10

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.91.0 2.0
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RC Circuit
Frequency Response
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• Bandwidth

– The bandwidth is the frequency where the amplitude ratio 

drops by a factor of 0.707 = -3dB of its gain at zero or low-

frequency.

– For a 1st-order system, the bandwidth is equal to 1/.

– The larger (smaller) the bandwidth, the faster (slower) the 

step response.

– Bandwidth is a direct measure of system susceptibility to 

noise, as well as an indicator of the system speed of 

response.

• Note that the amplitude ratio follows low- and high-frequency 

asymptotes, i.e., slope 0 and –20 dB/decade, respectively, and 

the phase angle approaches -90 asymptotically.  At the break 

frequency 1/, the phase angle is -45°.
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Measurements

• RC Circuit

– Time Response (Step Input)

– Frequency Response (Sine Input)
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Why 500 Hz ?

  5 5 0.15ms 0.75ms  

Let’s Use 1.00 ms:
Square Wave Period

2.00 ms
Square Wave Frequency

500 Hz  

Step Response: Square Wave Input

2 ms
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0.118ms 

63%
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Frequency Response

100 Hz 400 Hz 800 Hz

1061 Hz f 1061 Hz

T 0.943 ms





Magnitude Ratio: 0.798

Phase Angle:  40.5 deg
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1300 Hz 1800 Hz 2500 Hz

4000 Hz 10000 Hz
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f 10 KHz

T 0.100 ms





Magnitude Ratio: 

0.156

Phase Angle:

79.2 deg
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Bode Plot
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