

Predictive Maintenance with MATLAB and Simulink

Alec Stothert

Development Manager

Design Optimization and Identification

Why Predictive Maintenance?

Improved operating efficiency

New revenue streams

Competitive differentiator

What does a Predictive Maintenance algorithm do?

Helps make maintenance decisions based on large volumes of complex data

Condition Monitoring

Process of monitoring sensor data from machines (vibration, temperature etc.) in order to identify significant changes which can indicate developing faults

Predictive Maintenance

Technique that determines time-to-failure/remaining useful life (RUL) from sensor data & historical data in order to predict when maintenance should be performed

Predictive Maintenance Toolbox

- Develop and validate condition monitoring and predictive maintenance algorithms
- Apply signal processing and dynamic modeling techniques to extract features from your data to monitor machine health
- Train machine learning and time-series models to detect, classify, and predict machine failure

Reciprocating Pump Example

- Monitor pump condition and predict future condition
- Measure
 - Flow rate
 - Pressure
 - Engine current
- Faults
 - Leaks
 - Worn bearings
 - Blockages

COMMON SPECIFICATIONS	U.S.	Metric
Bore	0.945"	24 mm
Stroke	1.18"	30 mm
Crankcase Capacity	42 oz.	1.261
Shaft Diameter	1.181"	30 mm

Frequency Domain Indicators

 Use spectral peaks and harmonics to understand condition of pump

```
% Remove the mean from the flow and compute the flow spectrum
fA = flow;
fA.Data = fA.Data - mean(fA.Data);
[flowSpectrum,flowFrequencies] = pspectrum(fA,'FrequencyLimits',[2 250]);
```


Classify Faults Based on Condition Indicators

Train and test a support vector machine

```
% Create and train the classifier
template = templateSVM(...
    'KernelFunction', 'polynomial', ...
    'PolynomialOrder', 2, ...
    'KernelScale', 'auto', ...
    'BoxConstraint', 1, ...
    'Standardize', true);
combinedClassifier = fitcecoc(...
    predictors(cvp.training(1),:), ...
    response(cvp.training(1),:), ...
    'Learners', template, ...
    'Coding', 'onevsone', ...
    'ClassNames', [0; 1; 2; 3; 4; 5; 6; 7]);
```

	None	35	0	0	0	1	0	0	0
	Leak	0	24	0	5	0	1	0	0
Ħ	Blocking	2	0	32	0	0	0	1	0
Actual leak fault	Leak & Blocking	0	1	0	14	0	0	0	0
tual le	Bearing	2	0	0	0	26	1	2	0
Ä	Bearing & Leak	0	1	0	2	0	10	0	1
	Bearing & Blocking	0	0	2	1	3	0	15	0
	All	0	0	0	0	0	4	1	13
None Leak & Blocking Bearing & Leak Blocking All Leak & Blocking Bearing & Bearing & Bearing & Bearing & Booking									

Other Condition Indicators

Extract features using signal-based and model-based methods to determine machine health

Time (seconds)

Advanced Condition Indicators

 Capture time-varying dynamics (e.g. vibration data) by computing time-frequency moments

 Detect sudden changes in nonlinear systems using phase-space reconstruction methods (correlation dimension, approximate entropy, Lyapunov exponent)

Tools for Managing and Analyzing Data

- Generate data using Simulink
- Analyze data using datastores

M×8 tall table

qOut_meas	pMid	qVar	qSkewness	qKurtosis	LeakFault	BlockingFault	BearingFault
[2001×1 timetable]	103.56	9.5309	-0.55515	2.4113	1e-09	0.8	0
[2001×1 timetable]	87.039	9.2684	-0.57675	2.4018	1e-09	0.8	0
[2001×1 timetable]	117.22	9.3804	-0.54379	2.3226	1e-09	0.8	0
[2001×1 timetable]	97.658	9.5407	-0.5538	2.4124	4e-07	0.74	0.0002
[2001×1 timetable]	106.05	9.232	-0.56334	2.4103	1e-09	0.8	0
[2001×1 timetable]	109.96	9.732	-0.53987	2.3798	1e-09	0.8	0
[2001×1 timetable]	105.06	9.4902	-0.56641	2.3461	1e-09	0.8	0
[2001×1 timetable]	105.1	9.2956	-0.56135	2.3623	1e-09	0.8	0
:	:	:	:	:	:	:	:
:	:	:	:	:	:	:	:

Modeling Faults In Simulink

Parameterize Blocks

FEMA analysis to choose parameters and failure modes

Datastore to Manage Data

M×9 tall table

Date	qOut_meas		
16-Jan-2015	[2001×1 timetable]		
17-Jan-2015	[2001×1 timetable]		
18-Jan-2015 19-Jan-2015	[2001×1 timetable] [2001×1 timetable]		
20-Jan-2015	[2001×1 timetable]		
21-Jan-2015 22-Jan-2015	[2001×1 timetable] [2001×1 timetable]		
23-Jan-2015 :	[2001×1 timetable]		
:	:		

pMid	qVar	qSkewness	q K urtosi:
103.56	9.5309	-0.55515	2.4113
87.039	9.2684	-0.57675	2.4018
117.22	9.3804	-0.54379	2.3226
97.658	9.5407	-0.5538	2.4124
106.05	9.232	-0.56334	2.4103
109.96	9.732	-0.53987	2.3798
105.06	9.4902	-0.56641	2.3461
105.1	9.2956	-0.56135	2.3623
:	:	:	:
:	:	:	:

LeakFault	BlockingFault	BearingFault		
le-09	0.8	0		
le-09	0.8	0		
1e-09	0.8	0		
4e-07	0.74	0.0002		
le-09	0.8	0		
le-09	0.8	0		
le-09	0.8	0		
le-09	0.8	0		
:	:	:		
:	:	:		

- Ensemble (whole table)
- Member (one row)
- Independent variables
- Data variables
 - Source variables
 - Derived variables
- Condition variables

```
ens = simulationEnsembleDatastore('.\Data');
ens.SelectedVariables = [...
    "qOut_meas", | "qVar", "qSkewness", "qKurtosis",...
    "LeakFault",];
data = read(ens)
```

data = 1×5 table

	qOut_meas	qVar	qSkewness	qKurtosis	LeakFault
1	2001×1 tim	9.5309	-0.5551	2.4113	1.0000e-09

Sensor And Data Access in MATLAB

- Data sources accessible through MATLAB
 - Files (.xls, .cvs, .txt, .mat, etc,)
 - Distributed file systems Azure Blob Storage
 - Amazon S3
 - Industrial Internet of Things

Predict Pump Failures

 Use condition indicators to predict future behavior – remaining useful life (RUL)

Using Fleet Data to Predict Remaining Useful Life

```
% Build an train the model
mdl = residualSimilarityModel(...
    'Method', 'poly2',...
    'Distance', 'absolute',...
    'NumNearestNeighbors', 50,...
    'Standardize', 1);
fit(mdl, trainData);

% Use the model to predict RUL
[estRUL,ciRUL,pdfRUL] = predictRUL(mdl, newData);
```


RUL Methods and when to use them

Requirement: Need to know what constitutes failure data

MATLAB Coder and Compiler

Run predictive model on embedded devices

MATLAB Production Server and Enterprise Integration

Integrate predictive model with your enterprise system and cloud platform

Predictive Maintenance Development - Common pains

- How do I get started with developing algorithms?
 - Reference examples
 - Documentation based on the workflow
- How do I manage data and what if I don't have any data?
 - Command line functions to manage and label data
 - Examples showing Simulink models generating failure data
- How do I chose condition indicators and estimate the RUL?
 - Functions provided for estimating RUL
 - Functions for computing condition indicators

Predictive Maintenance Toolbox

- Develop and validate condition monitoring and predictive maintenance algorithms
- Apply signal processing and dynamic modeling techniques to extract features from your data to monitor machine health
- Train machine learning and time-series models to detect, classify, and predict machine failure
- Use functionality from Signal Processing,
 Statistics and Machine Learning and System identification

R2018a

Thank you!

Predictive Maintenance Toolbox

- Develop and validate condition monitoring and predictive maintenance algorithms
- Apply signal processing and dynamic modeling techniques to extract features from your data to monitor machine health
- Train machine learning and time-series models to detect, classify, and predict machine failure
- Use functionality from Signal Processing,
 Statistics and Machine Learning and System identification

R2018a

