What's new in MATLAB® and Simulink® for **Automated Driving** Mark Corless Automated Driving Segment Manager Industry Marketing 2018-05-02 # How can you use MATLAB and Simulink to develop automated driving algorithms? **Control Perception Planning** ## **Examples of how you can use MATLAB and Simulink to develop automated driving algorithms** # How can you use MATLAB and Simulink to develop perception algorithms? #### **Automated Driving System Toolbox introduced:** ### **Ground Truth Labeling App to label video data** #### **Automate labeling lanes with Ground Truth Labeler** ### Specify sublabels and attributes in Ground Truth Labeler App #### **Automate labeling pixels with Ground Truth Labeler** ### Learn how to train a deep learning network using this example Train free space detection network using deep learning Computer Vision System Toolbox[™] #### Load and overlay pixel labels ``` % Load pixel labels classes = ["Sky"; "Building";... "Pole"; "Road"; "Pavement"; "Tree";... "SignSymbol"; "Fence"; "Car";... "Pedestrian"; "Bicyclist"]; pxds = pixelLabelDatastore(... labelDir, classes, labelIDs); % Display labeled image C = readimage(pxds, 1); cmap = camvidColorMap; B = labeloverlay(I,C,'ColorMap',cmap); imshow(B) ``` pixelLabelDatastore manages large collections of pixel labels #### Visualize distribution of labeled pixels Labeled pixels in this set are imbalanced #### Add weighted layer to compensate for imbalanced data set ``` Complete Layer Graph % Create weighted layer pxLayer = pixelClassificationLayer(... 'Name', 'weightedLabels', 'ClassNames', tbl. Name, ... 'ClassWeights', classWeights) Replaced Layers Graph % Replace layer lgraph = removeLayers(lgraph, 'pixelLabels'); lgraph = addLayers(lgraph, pxLayer); lgraph = connectLayers(lgraph,... 'softmax', 'weightedLabels'); % Display network structure plot(lgraph); ylim([0 9.5]) title('Replaced Layers Graph') Replaced network layer ``` ### Train network and view progress [net, info] = trainNetwork(datasource, lgraph, options); ### Assess similarity using intersection-over-union (IoU) metric ``` iou = jaccard(actual,... expected); table (classes, iou) ans = 11×2 table classes iou "Sky" 0.92659 "Building" 0.7987 "Pole" 0.16978 "Road" 0.95177 "Pavement" 0.41877 "Tree" 0.43401 "SignSymbol" 0.32509 "Fence" 0.492 "Car" 0.068756 "Pedestrian" "Bicyclist" ``` ### Distribution of labels in data affects intersection-over-union (IoU) #### Distribution of labels in original data set #### **Evaluation metrics of network** | | Accuracy | IoU | MeanBFScore | |------------|----------|---------|-------------| | | | | | | Sky | 0.93544 | 0.89279 | 0.88239 | | Building | 0.79978 | 0.75543 | 0.59861 | | Pole | 0.73166 | 0.18361 | 0.51426 | | Road | 0.93644 | 0.90663 | 0.7086 | | Pavement | 0.90624 | 0.72932 | 0.70585 | | Tree | 0.86587 | 0.73694 | 0.67097 | | SignSymbol | 0.76118 | 0.35339 | 0.44175 | | Fence | 0.83258 | 0.49648 | 0.50265 | | Car | 0.90961 | 0.75263 | 0.64837 | | Pedestrian | 0.83751 | 0.35409 | 0.46796 | | Bicyclist | 0.84156 | 0.5472 | 0.46933 | Underrepresented classes such as Pedestrian and Bicyclist are not segmented as well as classes such as Sky and Road ### Detection drivable space using semantic segmentation ## Learn more about developing deep learning perception algorithms with these examples Add semantic segmentation automation algorithm to Ground Truth Labeler App Automated Driving System ToolboxTM Train free space detection network using deep learning Computer Vision System ToolboxTM Generate CUDA® code to execute directed acyclic graph network on an NVIDIA GPU GPU Coder™ # How can you use MATLAB and Simulink to develop perception algorithms? #### **Automated Driving System Toolbox introduced:** #### Multi-object tracker to develop sensor fusion algorithms ### How can I test my sensor fusion algorithm with live data? # Test forward collision warning algorithm with live data from vehicle # Test forward collision warning algorithm with live data from "surrogate" vehicle #### Send live CAN FD and TCP/IP data #### Receive live CAN FD and TCP/IP data #### **Generate C/C++ code for algorithm** #### Stream live CAN FD and TCP/IP data into compiled algorithm code #### Learn more about developing sensor fusion algorithms Design algorithm with multi-object tracker and recorded vehicle data Automated Driving System ToolboxTM Generate C/C++ code from algorithm which includes a multi-object tracker MATLAB Coder™ Stream CAN FD data to prototype algorithm on your laptop Vehicle Network Toolbox[™] # How can you use MATLAB and Simulink to develop control algorithms? #### **Automated Driving System Toolbox introduced:** #### Synthesizing scenarios to test sensor fusion algorithms # Simulate closed loop system with radar/vision detections, sensor fusion, and model-predictive control R201 # Synthesize detections to test sensor fusion and model-predictive controller #### Synthesize lane detection with Vision Detection Generator ### Create highway double curve with drivingScenario Driver waypoints simulate distraction at curvature changes #### Driver distracted at curvature change #### Simulate distracted driver #### Simulate lane keep assist at distraction events #### Compare distracted and assisted results Detect lane departure and maintain lane during distraction #### Driver asssisted at curvature change #### Simulate lane following by increasing minimum safe distance #### **Graphically edit scenarios with Driving Scenario Designer** #### **Export MATLAB code to generate scenarios** #### Explore what is required to follow high curvature paths # Learn about synthesizing sensor detections to develop control algorithms with these examples Simulate and generate C++ for model-predictive control and sensor fusion algorithms Simulate and generate C++ for model-predictive control with lane detections Edit roads, cuboid actors, and sensors with Driving Scenario Designer App drivingScenarioDesigner # Learn about modeling vehicle dynamics to develop control algorithms with these examples - Simulate vehicle dynamics for closed loop design - Vehicle Dynamics Blockset[™] - Co-simulate with Unreal Engine and to set actor positions get camera image Vehicle Dynamics BlocksetTM # How can you use MATLAB and Simulink to develop planning algorithms? #### Robotics System Toolbox introduced: #### Connectivity with the ROS ecosystem Communicate via ROS to integrate with externally authored ROS components Communication with Gazebo to visualize and simulated system Follow path for <u>differential</u> <u>drive robot</u> with ROS based simulator ## We are investing in design and simulation of path planning for automobiles ## Learn about developing path planning algorithms with these examples Plan path for automobile given pre-defined map Automated Driving System ToolboxTM Plot map tiles using World Street Map (Esri) Automated Driving System ToolboxTM Simulate V2X communication to assess channel throughput LTE System ToolboxTM #### **Examples of how you can use MATLAB and Simulink to develop** automated driving algorithms # MathWorks can help you customize MATLAB and Simulink for your automated driving application - Consulting project with Caterpillar - 2017 MathWorks Automotive Conference #### Lidar ground truth labeling - Joint presentation with Autoliv - SAE Paper 2018-01-0043 - 2018 MathWorks Automotive Conference - Lidar sensor model for Unreal Engine - Joint paper with Ford - SAE Paper 2017-01-0107 ## How can we help you can use MATLAB and Simulink to develop automated driving algorithms?