

What's new in MATLAB® and Simulink® for **Automated Driving**

Mark Corless
Automated Driving Segment Manager
Industry Marketing
2018-05-02

How can you use MATLAB and Simulink to develop automated driving algorithms?

Control Perception Planning

Examples of how you can use MATLAB and Simulink to develop automated driving algorithms

How can you use MATLAB and Simulink to develop perception algorithms?

Automated Driving System Toolbox introduced:

Ground Truth Labeling App to label video data

Automate labeling lanes with Ground Truth Labeler

Specify sublabels and attributes in Ground Truth Labeler App

Automate labeling pixels with Ground Truth Labeler

Learn how to train a deep learning network using this example

 Train free space detection network using deep learning

Computer Vision System Toolbox[™]

Load and overlay pixel labels

```
% Load pixel labels
classes = ["Sky"; "Building";...
 "Pole"; "Road"; "Pavement"; "Tree";...
 "SignSymbol"; "Fence"; "Car";...
  "Pedestrian"; "Bicyclist"];
pxds = pixelLabelDatastore(...
   labelDir, classes, labelIDs);
% Display labeled image
C = readimage(pxds, 1);
cmap = camvidColorMap;
B = labeloverlay(I,C,'ColorMap',cmap);
imshow(B)
```


pixelLabelDatastore
manages large collections
of pixel labels

Visualize distribution of labeled pixels

Labeled pixels in this set are imbalanced

Add weighted layer to compensate for imbalanced data set

```
Complete Layer Graph
% Create weighted layer
pxLayer = pixelClassificationLayer(...
   'Name', 'weightedLabels', 'ClassNames', tbl. Name, ...
   'ClassWeights', classWeights)
                                                                      Replaced Layers Graph
% Replace layer
lgraph = removeLayers(lgraph, 'pixelLabels');
lgraph = addLayers(lgraph, pxLayer);
lgraph = connectLayers(lgraph,...
   'softmax', 'weightedLabels');
% Display network structure
plot(lgraph); ylim([0 9.5])
title('Replaced Layers Graph')
                                                     Replaced network
                                                           layer
```


Train network and view progress

[net, info] = trainNetwork(datasource, lgraph, options);

Assess similarity using intersection-over-union (IoU) metric

```
iou = jaccard(actual,...
                     expected);
table (classes, iou)
ans =
 11×2 table
     classes
                    iou
   "Sky"
                   0.92659
   "Building"
                   0.7987
   "Pole"
                   0.16978
   "Road"
                   0.95177
   "Pavement"
                   0.41877
   "Tree"
                   0.43401
   "SignSymbol"
                   0.32509
   "Fence"
                     0.492
   "Car"
                  0.068756
   "Pedestrian"
   "Bicyclist"
```


Distribution of labels in data affects intersection-over-union (IoU)

Distribution of labels in original data set

Evaluation metrics of network

	Accuracy	IoU	MeanBFScore
Sky	0.93544	0.89279	0.88239
Building	0.79978	0.75543	0.59861
Pole	0.73166	0.18361	0.51426
Road	0.93644	0.90663	0.7086
Pavement	0.90624	0.72932	0.70585
Tree	0.86587	0.73694	0.67097
SignSymbol	0.76118	0.35339	0.44175
Fence	0.83258	0.49648	0.50265
Car	0.90961	0.75263	0.64837
Pedestrian	0.83751	0.35409	0.46796
Bicyclist	0.84156	0.5472	0.46933

Underrepresented classes such as Pedestrian and Bicyclist are not segmented as well as classes such as Sky and Road

Detection drivable space using semantic segmentation

Learn more about developing deep learning perception algorithms with these examples

 Add semantic segmentation automation algorithm to Ground Truth Labeler App Automated Driving System ToolboxTM

 Train free space detection network using deep learning

Computer Vision
System ToolboxTM

Generate CUDA® code to execute directed acyclic graph network on an NVIDIA GPU

GPU Coder™

How can you use MATLAB and Simulink to develop perception algorithms?

Automated Driving System Toolbox introduced:

Multi-object tracker to develop sensor fusion algorithms

How can I test my sensor fusion algorithm with live data?

Test forward collision warning algorithm with live data from vehicle

Test forward collision warning algorithm with live data from "surrogate" vehicle

Send live CAN FD and TCP/IP data

Receive live CAN FD and TCP/IP data

Generate C/C++ code for algorithm

Stream live CAN FD and TCP/IP data into compiled algorithm code

Learn more about developing sensor fusion algorithms

 Design algorithm with multi-object tracker and recorded vehicle data

Automated Driving System ToolboxTM

Generate C/C++
 code from algorithm
 which includes a
 multi-object tracker
 MATLAB Coder™

 Stream CAN FD data to prototype algorithm on your laptop

Vehicle Network Toolbox[™]

How can you use MATLAB and Simulink to develop control algorithms?

Automated Driving System Toolbox introduced:

Synthesizing scenarios to test sensor fusion algorithms

Simulate closed loop system with radar/vision detections, sensor fusion, and model-predictive control R201

Synthesize detections to test sensor fusion and model-predictive controller

Synthesize lane detection with Vision Detection Generator

Create highway double curve with drivingScenario

Driver
 waypoints
 simulate
 distraction at
 curvature
 changes

Driver distracted at curvature change

Simulate distracted driver

Simulate lane keep assist at distraction events

Compare distracted and assisted results

 Detect lane departure and maintain lane during distraction

Driver asssisted at curvature change

Simulate lane following by increasing minimum safe distance

Graphically edit scenarios with Driving Scenario Designer

Export MATLAB code to generate scenarios

Explore what is required to follow high curvature paths

Learn about synthesizing sensor detections to develop control algorithms with these examples

 Simulate and generate C++ for model-predictive control and sensor fusion algorithms

 Simulate and generate C++ for model-predictive control with lane detections

 Edit roads, cuboid actors, and sensors with
 Driving Scenario Designer App drivingScenarioDesigner

Learn about modeling vehicle dynamics to develop control algorithms with these examples

- Simulate vehicle dynamics for closed loop design
 - Vehicle Dynamics Blockset[™]
- Co-simulate with Unreal Engine and to set actor positions get camera image

Vehicle Dynamics BlocksetTM

How can you use MATLAB and Simulink to develop planning algorithms?

Robotics System Toolbox introduced:

Connectivity with the ROS ecosystem

Communicate via ROS
 to integrate with
 externally authored ROS
 components

 Communication with Gazebo to visualize and simulated system

 Follow path for <u>differential</u> <u>drive robot</u> with ROS based simulator

We are investing in design and simulation of path planning for automobiles

Learn about developing path planning algorithms with these examples

Plan path for automobile given pre-defined map

Automated Driving

System ToolboxTM

 Plot map tiles using World Street Map (Esri)

Automated Driving

System ToolboxTM

Simulate V2X
 communication to assess
 channel throughput

LTE System ToolboxTM

Examples of how you can use MATLAB and Simulink to develop automated driving algorithms

MathWorks can help you customize MATLAB and Simulink for your automated driving application

- Consulting project with Caterpillar
- 2017 MathWorks Automotive Conference

Lidar ground truth labeling

- Joint presentation with Autoliv
- SAE Paper 2018-01-0043
- 2018 MathWorks Automotive Conference

- Lidar sensor model for Unreal Engine
- Joint paper with Ford
- SAE Paper 2017-01-0107

How can we help you can use MATLAB and Simulink to develop automated driving algorithms?

