# A Conceptual Framework for ADAS/AD Safety

October 20, 2022 | Stuttgart

Dr. Mohammad Abu-Alqumsan Dr. Gaspar Gil Gómez



© 2022 The MathWorks, Inc.

### What are you going to learn today?

How the industry is *learning the unknown* and *making it safe* 



### 1) Safety Argumentation:

- Safety Of The Intended Function (SOTIF)
- Mileage coverage vs Scenario Coverage

### 2) Modelling & Simulation:

- Environment (scenes & scenarios)
- System under test (AD/ADAS)

# Have you ever been involved in a car accident?









### Human beings are prone to errors

See distribution critical reasons pre-crash event (NHTSA)\*\_\_\_\_



Environment





+ 2% unknown reasons

Worldwide, approximately 1.3 million ~ 2 x population of Stuttgart die each year on road traffic crashes.

World Health Organization

https://www.who.int/news-room/fact-sheets/detail/road-traffic-injuries (Accessed April 11, 2022)



# Step 1 - Advanced driver assistance systems (ADAS)





Vehicle

Environment

# Step 1 - Advanced driver assistance systems (ADAS)





Vehicle

Environment

### Step 2 – Fully Automated Driving

AD Passenger System Senses 阃 🛜 Plans Acts Vehicle

# **Environment** Step 2 – Fully Automated Driving 10 10 10 10 10 10 AD Passenger System Senses 阃 🛜 - innin Plans Acts

Vehicle

### WE are now the human input; WE need to ensure systems are safe



How can we demonstrate AD systems are safer than Human Drivers?



How to demonstrate AD systems are safer than Human Drivers?





|         | Hazardous | Not<br>Hazardous           |
|---------|-----------|----------------------------|
| Known   | Area 2    | Area 1<br>Nominal behavior |
| Unknown | Area 3    | Area 4<br>Robustness       |







Accumulate evidence to reach the acceptance criteria

P(fatality) < 10<sup>-x</sup> /h P(injury) < 10<sup>-y</sup> /h

### Which scenarios to test?



### Which scenarios to test?



### Structuring the Environment



SAE J3016 defines ODD as

Operating conditions under which a given driving automation system ... is specifically designed to function, including...

### **Scenario Derivation**



### Creating scenes follows a similar workflow as Scenario Derivation



The industry uses different sources of information for road networks



# Aerial images support manual modelling of *road networks*, as well as *Roadside Structures*



Orthoimagery

30

# HD maps allows industry to automate the creation of virtual versions of real *road networks*



## A challenge, in industry, is the number of formats for the scenes.



### Modelling the Dynamic Elements



### Modelling the Dynamic Elements

Dynamic Elements Traffic Ego Vehicle





1.71s entity[0]: Ego (0) 59.98km/h 28.49m (0, 1, 0.00, 41.36) / (-130.65, 4.97 0.10)

### Modelling the Environment conditions

Sun Altitude =90, Sun Azimuth =180 (Noon)



Sun Altitude =-90, Sun Azimuth =180 (Midnight)

Sun Altitude =0, Sun Azimuth =180 (SunRise)



Environment Conditions

Weather

# Modelling large amounts of concrete scenarios through programmatical parametrization

### Speed of the Ego Vehicle:



### 1) Safety Argumentation:

- Safety Of The Intended Function (SOTIF)
- Scenario Coverage

### 2) Modelling & Simulation:

- Environment (scenes & scenarios)
- System under test (AD/ADAS)



6 m/s

10 m/s











# The maturity of your development/simulation









Perception

### Tracking and Fusion

### Planning



### Virtual to Physical

# **Concluding Remarks**

### How is the industry addressing the safety of ADAS/AD?



- Argumentation framework to ensure SOTIF
- Identification of critical scenarios through analysis
- Development of V&V strategy based on virtual testing
- Identification of critical scenarios from real driving data
- Standardized interfaces between tools in simulation toolchain

