
Auxiliary

Auxiliary

Auxiliary

Thomas Kleinhenz

End-2-End framework from
Cloud-to-SoC for automotive
development for SDV

© Elektrobit 2024 | Public

May 7th, 2024

Auxiliary

Auxiliary

Auxiliary

Observed industry
challenges

What are the
conclusions, and

what’s next?

How to solve it? What about
automation, and

virtualization?

Do you have some
examples?

Agenda

01 02 03 04 05

May 2, 2024© Elektrobit 2024 | Public 2

Auxiliary

Auxiliary

Auxiliary

Observed industry challenges
May 2, 2024© Elektrobit 2024 | Public 3

Auxiliary

Auxiliary

Auxiliary

Observed industry challenges (… as in focus for this talk)

May 2, 2024

System evaluation

Evaluating the feasibility of new
features or functionalities during
system definition to ensure that a
new feature or functionality can
be executed on a preferred HW
platform during system definition
phase

HW performance forecast for
upcoming features and product
generations that shall run on the
same HW platform

System definition

Estimation and characterization
of system parameter like MIPS,
memory footprint (code & data)
and power consumption

Early integration

Early definition of interfaces
(type, signals) including
bandwidth requirements

Working in a fully automated
cloud environment

Verification

Full functional and non-functional
verification of the intended feature
or algorithm at low cost and with
high degree of re-usability

Natively and seamlessly close the
gap between simulation and virtual
validation as well as real-world
testing

© Elektrobit 2024 | Public 4

Auxiliary

Auxiliary

Auxiliary

Establish a framework offering a technology and solution that allows

− an analysis to feasibility of running given use cases on an abstracted
HW

− a high-level simulation to derive non-functional requirements: MIPS,
memory footprint (code & data) and power consumption

− an early integration of interfaces

− a test-harness to verify productive SWC (software-in-the-loop)

− the generation of the software framework

through state-of-art modelling

− MATLAB/Simulink co-design to build abstracted and autogenerated
SWC including full requirements management and tracking

− integrate the base SW, SWC, and HW components

− generate Silver virtual ECUs and real ECUs

− validation and test in cloud or real platforms

Requirements for any solution

May 2, 2024© Elektrobit 2024 | Public 5

Auxiliary

Auxiliary

Auxiliary

How to solve it?
May 2, 2024© Elektrobit 2024 | Public 6

Auxiliary

Auxiliary

Auxiliary

Cloud-to-SoC E2E framework for SDV

May 2, 2024© Elektrobit 2024 | Public 7

V
e

ri
fi

c
a

ti
o

n
&

 V
a

li
d

a
ti

o
n

System definition

Use-case or
application

model

Customer HW
inputs

Analyze

System parameters

Application

Framework CySec & FuSa Simulate Abstracted ECUInterfaces

Target base system

Virtualization Test Stimuli Automation

Native AI workflow

CySec & FuSa

Cloud infrastructure

Real co-simulation

System Definition: requirements: management and architecture validation/handling
Target Base System: complete middleware, OS and BSW layer plus MCAL
Application: low-level and Autosar application including AI
Analyze: Comprehensive analysis of all system width dependencies, parameter, calibration and results

Auxiliary

Auxiliary

Auxiliary

System-level and application-level perspective

8May 2, 2024

System-level perspective

− Estimation and characterization of system parameter like
MIPS, memory footprint (code & data) and power
consumption

− Interface definition

Application-level perspective

− Complements system-level-flow to enable an end-2-end
closed loop environment in software and hardware for
model-based application development

− Instead of an abstracted SWC, a production-grade
application model can be used

− Important is interface compliance to allow an exchange of
the models for e.g., regression tests

Realization of system-level and application-level in one
environment

© Elektrobit 2024 | Public

System-level perspective

V
er

if
ic

a
ti

o
n

&
 V

a
lid

a
ti

o
n

System definition

Use-case
application

model

Customer
HW inputs

Analyze

System Parameters

Application

Framework CySec Simulate Abstracted ECUInterfaces

Target basesystem

Virtualization Test Stimuli Automation

Application-level perspective

Flexible deployment of modelled application to

Application Base
system

Co-Simulation MATLAB/Simulink

vECU Real ECU Test car

Auxiliary

Auxiliary

Auxiliary

What about automation, and
virtualization?

May 2, 2024© Elektrobit 2024 | Public 9

Auxiliary

Auxiliary

Auxiliary

− Level 0: algorithm model, for
example in Simulink, of the
functionality for fast prototyping
up to series release

− Level 1: application-level
simulation, hence it includes the
production code of the
application, but no middleware

− Level 2: simulation middleware

− Level 3: production middleware

− Level 4: full binary, requires HW
simulator

Virtual ECU levels

May 2, 2024© Elektrobit 2024 | Public 10

A framework needs to address vECU levels 0 to 4

Auxiliary

Auxiliary

Auxiliary

SWC Development

SWC

SW Developer

Reduced software integration costs by automation

May 2, 2024© Elektrobit 2024 | Public 11

AutoCore

RTE

Application (OEM / Tier 1)

ECU

MCAL

OS

ECU Hardware µC

AutoCore
OS

vMCAL

RTE

Application (OEM / Tier 1)

vECU (Level 3)

Synopsys Silver on Windows® / Linux®

Integration & Verification

Platform
binary

Example: EB tresos

AutoCore

RTE

MCAL

OS

build real ECU

build vECU
architectural
description

Platform selection
(E.g., EB tresos)

Elektrobit code
generation

solution

Elektrobit code
generation solution
allows a template-based
approach for
integration in any
platform including
AUTOSAR, ROS2, eCAL

It reduces software
integration time by
automation and
component glue code
generation for multiple
platforms

Auxiliary

Auxiliary

Auxiliary

MBD Framework, EB Library, and EB Toolbox

May 2, 2024© Elektrobit 2024 | Public 12

A set of MATLAB/Simulink blocks qualified by ElektrobitEB library

An inhouse developed set of utilities for MATLAB/SimulinkEB toolbox

A model generator for evaluating a primary source file, and
generating a Simulink modelFramework

EB library EB toolbox

System Model Definition
(e.g. in .xml)

components, interfaces,
parameters

ModelGenerator

Automation of model
construction

Ready to build model

Guidelines

Unify model frame generation and
model architecture by using a one
source approach with high degree auf
automation

− Creation of interfaces, calibrations,
signals, etc.

− Creation and linkage of data
dictionaries to defined models

− Forces usage of qualified library
block entities in models

− Maintaining consistent structures
inside models

− Ready-to-build models

− Model validation at an early stage

− Consistent model configuration, etc.

Auxiliary

Auxiliary

Auxiliary

Secure and safe
update of

vehicle
software

Detection and
response to

security
incidents

Security by
design

Vehicle risk
management

Automated security analysis tooling

May 2, 2024

The UNECE regulations No. 155 & 156 specify 4 categories:

© Elektrobit 2024 | Public

Most security analysis solutions have many disadvantages:

− High cost

− Low coverage

− Inconsistency

− Manual work

− Incompatibility with MBDSE

CySec
tooling

Automated security analysis

Requirement generation and management

Efficient integration of security by design in
model-based design (e.g., MATLAB/Simulink)

High coverage of threats

13

MATLAB/Simulink Model

Security analysis
automation

Requirement Manager Attack Library

Auxiliary

Auxiliary

Auxiliary

Do you have some examples?
May 2, 2024© Elektrobit 2024 | Public 14

Auxiliary

Auxiliary

Auxiliary

ML/DL function based on TinyML

This examples shows 2 aspects:

- How to natively embedded TF-
Lite (TinyML) in the overall
workflow?

- How to do a performance
anaylsis?

SW performance analysis methodology

System performance analysis

In this example a role-based system
component is designed, and its
performance evaluated

Finally, codes for different platforms
is generated and deployed

Cloud-based development

A typical example for a cloud-based
development: Autosar adaptive
SWC designed with
MATLAB/Simulink

15May 2, 2024© Elektrobit 2024 | Public

Auxiliary

Auxiliary

Auxiliary

Example: ML/DL function based on TinyML

16May 2, 2024© Elektrobit 2024 | Public

1

2

3
4

6

5

4. Simulation output

5. Performance analysis

6. Generated code for
Jetson Nano

1. TF-Lite (TinyML) object
detection and
classification

2. System model

3. Test Harness

Auxiliary

Auxiliary

Auxiliary

Example: system performance analysis

17May 2, 2024

1. Measure task with performance measurements

2. Evaluate performance with advisor

3. Generate code and compile for different platforms like
host, embedded, or HW (FPGA)

© Elektrobit 2024 | Public

2

3 1

Auxiliary

Auxiliary

Auxiliary

Example: cloud-based adaptive AUTOSAR SWC

18May 2, 2024

1. Cloud development
framework

2. Generated workspace

3. Docker container setup

4. Use MATLAB/Simulink
for code generation

5. Built MATLAB/Simulink
Autosar adaptive SWC

6. Virtual deployment and
execution on EB linux +
Qemu both build for
ARM64. Execute the
App!

© Elektrobit 2024 | Public

1 2 3

4

5

6

Auxiliary

Auxiliary

Auxiliary

What are the conclusions?
What’s next?

May 2, 2024© Elektrobit 2024 | Public 19

Auxiliary

Auxiliary

Auxiliary

At system definition it is key to ensure that a new SW feature can
be deployed and executed on an existing or new SoC

Our End-2-End framework for SDV enables a shift left of the
development through virtualization of the design from
systematization, development, up to test of functional and non-
functional requirements and integration, and from cloud to SoC

Realizing the essence of SDV by using Elektrobits framework in
combination MATLAB/Simlink from exploration of innovative ideas,
development of software functions, integration, and verification,
seamlessly and fast in one framework and consistently form cloud to
SoC, both virtual and real.

Key take aways

20May 2, 2024© Elektrobit 2024 | Public

Auxiliary

Auxiliary

Auxiliary

Enhance analysis capabilities

Add further analysis methods like power analysis support

Integration of full vECU models

Add support of full test automation based on Elektrobit’s automated
test tool for AUTOSAR and EB Assist

Enable full cloud capabilities

Add support of/for further cloud solution including Continental
CAEdge (Classic ASR, adaptive ASR, other OS)

Add customizable cloud support enabling flexible usage in various
environments, e.g., Continental CAEdge, or customer-owned
environments

What’s next?

21May 2, 2024© Elektrobit 2024 | Public

Auxiliary

Auxiliary

Auxiliary

Director, EB-EST-CMS
Elektrobit – Our software moves the world

thomas.kleinhenz@elektrobit.com
elektrobit.com

Thomas Kleinhenz

Contact us

© Elektrobit 2024 | Public

https://www.linkedin.com/company/elektrobit-eb-automotive
https://www.youtube.com/@elektrobit_official
https://instagram.com/elektrobit_official
https://twitter.com/_Elektrobit

	Slide 1: End-2-End framework from Cloud-to-SoC for automotive development for SDV
	Slide 2: Agenda
	Slide 3
	Slide 4: Observed industry challenges (… as in focus for this talk)
	Slide 5: Requirements for any solution
	Slide 6
	Slide 7: Cloud-to-SoC E2E framework for SDV
	Slide 8: System-level and application-level perspective
	Slide 9
	Slide 10: Virtual ECU levels
	Slide 11: Reduced software integration costs by automation
	Slide 12: MBD Framework, EB Library, and EB Toolbox
	Slide 13: Automated security analysis tooling
	Slide 14
	Slide 15: SW performance analysis methodology
	Slide 16: Example: ML/DL function based on TinyML
	Slide 17: Example: system performance analysis
	Slide 18: Example: cloud-based adaptive AUTOSAR SWC
	Slide 19
	Slide 20: Key take aways
	Slide 21: What’s next?
	Slide 22: Contact us

