## Twilight Zone Macroeconomics

## Paul D. McNelis

May 2015

- We have entered into a new era of macroeconomics in advanced countries.
- As late as 2006, we were in the Great Moderation
- No more inflation, business cycle had been greatly moderated
- Economists were fighting over who should get credit
  - FED folks said it was due to astute monetary policy
  - Others said it was due to technology: beter inventory management due to forecasting
  - Others said it was good luck
  - Still other said it was due to Ronald Reagan and new credibility
- But there were warning: no more CPI inflation but asset price inflation
- Should the FED have burst the bubbles in asset prices and real estate under Greespan?
- Experience of Japan was a waraning not to burst bubble.

• Usual way to conduct monetary policy is through interest-rate rule known as the Taylor rule:

normal: 
$$i_t = (1 - \rho) \left[ i + \kappa^{\pi} \pi_t + \kappa^{y} \log(Y_t / Y_t^*) \right] + \rho i_{t-1}$$
 (1)

$$ZLB: i_t = 0; \rho = 0 \tag{2}$$

$$1 + i_t = R_{t+1} \frac{E_t P_{t+1}}{P_t}$$
(3)

- Interest rates cannot go below zero.
- What is key is the relation between the real interest rate and the nominal rate.
- Real interest rates can rise if the expected inflation is negative.
- This is nightmare on Elm Street and Friday the 13th all wrapped up into one.

• Quantitative Easing=Large Scale Asset Purchases=Long Term Repurchase Operations



- Billion here, billion there: soon it adds up to real money
- This is quasi-fiscal monetary policy: FED was buying assets of non-bank financial institutions.

- If interest rates are stuck at zero, we can use tax-rate changes on consumpton and income
- These changes affect decisions on consumption and labor supply the same way interest rate changes do.
- Idea is that the tax rate on consumption affects intertemporal trade off between current and future consumption
- Tax rate on labor affects the intratemporal tradeff between work and leisure
- So if tax rates can change, no big deal if interest rates are stuck
- We tried this briefly with "cash for clunckers" in 2009. Did it go far enough?

• A model with two regimes: one with totally flexible interest rates one with the zero lower bound

- A model with two regimes: one with totally flexible interest rates one with the zero lower bound
- This is a regime-switching model, or a model with occasionally binding constraints.

- A model with two regimes: one with totally flexible interest rates one with the zero lower bound
- This is a regime-switching model, or a model with occasionally binding constraints.
- It is also a nonlinear model.

- A model with two regimes: one with totally flexible interest rates one with the zero lower bound
- This is a regime-switching model, or a model with occasionally binding constraints.
- It is also a nonlinear model.
  - We simulate the model with the swtiching regimes and the one with flexible interest rates

- A model with two regimes: one with totally flexible interest rates one with the zero lower bound
- This is a regime-switching model, or a model with occasionally binding constraints.
- It is also a nonlinear model.
  - We simulate the model with the swtiching regimes and the one with flexible interest rates
  - We then evaluate the performace with QE policies and with tax rate rules for consumption and labor income

- A model with two regimes: one with totally flexible interest rates one with the zero lower bound
- This is a regime-switching model, or a model with occasionally binding constraints.
- It is also a nonlinear model.
  - We simulate the model with the swtiching regimes and the one with flexible interest rates
  - We then evaluate the performace with QE policies and with tax rate rules for consumption and labor income
  - Model is driven in one case by regurring productivity shocks and in another by recurring financial shocks.

- The model is simulated for recurring shocks and simulated for T= 100,000 periods.
- We then isolate sub-periods when the GDP is two standard deviations below its stochastic mean.
- This then allows us to examine the adjustment of key macroeconomic variables for five years before and five years after the crisis event. In the non-crisis regime, an optimal Taylor rule is operational for the interest rate.
- In the crisis regime, we first examine the case of the zero lower bound with no fiscal or monetary alternatives.
- Then we compare and contrast results for two alternative cases:
- (optimal quantitative easing rule
- (iioptimal rules for the tax rates on consumption and wages.
- Like impulse response paths, the method shows the paths for the different scenarios

The approach has the added advantage that we can also ascertain the frequency/likelihood of crisis compared to normal times.

| Table 1                                                                 |          |         |          |         |          |         |  |  |  |  |  |
|-------------------------------------------------------------------------|----------|---------|----------|---------|----------|---------|--|--|--|--|--|
| Stochastic Mean and Srd dev (%Y): Simulated Data for Productivity Shock |          |         |          |         |          |         |  |  |  |  |  |
| Variable                                                                | ZLB      |         | Q        | QE      |          | FR      |  |  |  |  |  |
|                                                                         | Mean     | Std dev | Mean     | Std dev | Mean     | Std dev |  |  |  |  |  |
| Y                                                                       | 0.692    | 1       | 0.708    | 1       | 0.668    | 1       |  |  |  |  |  |
| С                                                                       | 0.434    | 0.762   | 0.434    | 0.736   | 0.447    | 0.148   |  |  |  |  |  |
| 1                                                                       | 0.080    | 0.453   | 0.082    | 0.371   | 0.078    | 0.088   |  |  |  |  |  |
| W                                                                       | 1.379    | 2.731   | 1.386    | 2.724   | 1.385    | 2.373   |  |  |  |  |  |
| Q                                                                       | 1.000    | 0.474   | 1.000    | 0.312   | 0.999    | 0.526   |  |  |  |  |  |
| П                                                                       | 1.000    | 0.131   | 1.000    | 0.120   | 0.999    | 0.222   |  |  |  |  |  |
| $(R_t^k - R_t)$                                                         | 0.023    | 0.102   | 0.023    | 0.228   | 0.020    | 0.674   |  |  |  |  |  |
| Ň                                                                       | 3.734    | 1.651   | 2.956    | 1.613   | 3.688    | 3.896   |  |  |  |  |  |
| ψ                                                                       | _        | _       | 0.226    | 0.339   | _        | _       |  |  |  |  |  |
| G                                                                       | 0.178    | _       | 0.193    | 0.057   | 0.144    | 1.066   |  |  |  |  |  |
| $	au^{c}$                                                               | _        | _       | _        | _       | -0.011   | 1.217   |  |  |  |  |  |
| $	au^w$                                                                 | _        | _       | _        | _       | -0.014   | 1.575   |  |  |  |  |  |
| Welfare                                                                 | -318.264 | 45.243  | -320.422 | 45.406  | -313.752 | 4.562   |  |  |  |  |  |
| % Crisis                                                                | 0.066    |         | 0.040    |         | 0.050    |         |  |  |  |  |  |
| (ロ) (型) (目) (日) (日) (日) (日) (日) (日) (日) (日) (日) (日                      |          |         |          |         |          |         |  |  |  |  |  |

Fordham ()

\_

Quasi-Fiscal Monetary and Quasi-Monetary F

May 2015 8 / 1

## Table 2

Summary Min-Max Values for Recurring Productivity Shock

|                                |          | ZLB      |          | QE       |          | FR       |
|--------------------------------|----------|----------|----------|----------|----------|----------|
| Variable                       | Min      | Max      | Min      | Max      | Min      | Max      |
| Y                              | 0.612    | 0.768    | 0.626    | 0.781    | 0.577    | 0.780    |
| С                              | 0.382    | 0.487    | 0.367    | 0.482    | 0.438    | 0.465    |
| 1                              | 0.052    | 0.129    | 0.053    | 0.120    | 0.070    | 0.087    |
| $W/P_m$                        | 1.187    | 1.604    | 1.145    | 1.609    | 1.145    | 1.610    |
| Q                              | 0.962    | 1.038    | 0.971    | 1.027    | 0.925    | 1.026    |
| П                              | 0.990    | 1.010    | 0.984    | 1.012    | 0.973    | 1.025    |
| $n\left(R_{t}^{k}/R_{t} ight)$ | 0.012    | 0.030    | -0.006   | 0.042    | -0.064   | 0.089    |
| Ν                              | 3.591    | 3.886    | 2.856    | 3.170    | 3.357    | 4.144    |
| $\psi$                         | -        | -        | 0.193    | 0.251    | -        | -        |
| G                              | 0.178    | 0.178    | 0.188    | 0.197    | 0.034    | 0.261    |
| $	au^{c}$                      | -        | -        | -        | -        | -0.153   | 0.104    |
| $	au^w$                        | _        | _        | _        | _        | -0.199   | 0.135    |
| Welfare                        | -321.886 | -314.670 | -324.659 | -316.919 | -314.251 | -313.218 |
|                                |          |          |          |          |          |          |

L





Fordham ()

Quasi-Fiscal Monetary and Quasi-Monetary F





Fordham ()

Quasi-Fiscal Monetary and Quasi-Monetary F