
1© 2017 The MathWorks, Inc.© 2021 The MathWorks, Inc.

Développement d’un FOC pour PMSM
Accélérer l’électrification



2



3

More Complex Algorithms

▪ Increasing motor control 

algorithm complexity

– Field-Oriented Control (FOC)

– Field-weakening control

– Sensorless

– Space vector PWM

▪ Increasing need to run these 

algorithms faster 

– Wide bandgap semiconductors

– Increasing popularity of motor 

types such as switched 

reluctance motors



4

Model-Based Design



5

Why Simulink for motor control?

▪ Verify control algorithm with desktop simulation

▪ Generate compact and fast code from models

▪ Minimize development time using reference examples

➔



6

CALIBRATE SENSORS

ESTIMATE MOTOR PARAMETERS

MODEL MOTOR & INVERTER

DESIGN FOC ALGORITHM

TUNE CONTROLLER GAINS

GENERATE CODE

VALIDATE ON HARDWARE

VERIFY IN DESKTOP SIMULATION



7

Agenda

CALIBRATE SENSORS

ESTIMATE MOTOR PARAMETERS

MODEL MOTOR & INVERTER

DESIGN FOC ALGORITHM

TUNE CONTROLLER GAINS

GENERATE CODE

VALIDATE ON HARDWARE

VERIFY IN DESKTOP SIMULATION

▪ Plant modeling

– Sensors Calibration

– Motor Parameters Estimation

– Motor and Inverter Model

▪ Algorithm design with simulation

– Field-Oriented control

– Autotuning control gain 

– Verifying controller

▪ Software deployment

– Code generation



8

Texas Instruments Motor Control Kit



9

▪ Plant modeling

– Sensors Calibration

– Motor Parameters Estimation

– Motor and Inverter Model

▪ Algorithm design with simulation

– Field-Oriented control

– Autotuning control gain 

– Verifying controller

▪ Software deployment

– Code generation

Agenda

CALIBRATE SENSORS

ESTIMATE MOTOR PARAMETERS

MODEL MOTOR & INVERTER

DESIGN FOC ALGORITHM

TUNE CONTROLLER GAINS

GENERATE CODE

VALIDATE ON HARDWARE

VERIFY IN DESKTOP SIMULATION



10

Agenda

▪ Plant modeling

– Sensors Calibration

– Motor Parameters Estimation

– Motor and Inverter Model

▪ Algorithm design with simulation

– Field-Oriented control

– Autotuning control gain 

– Verifying controller

▪ Software deployment

– Rapid control prototyping

– Code generation

– Hardware-In-The-Loop (HIL) test

CALIBRATE SENSORS

ESTIMATE MOTOR PARAMETERS

MODEL MOTOR & INVERTER

DESIGN FOC ALGORITHM

TUNE CONTROLLER GAINS

GENERATE CODE

VALIDATE ON HARDWARE

VERIFY IN DESKTOP SIMULATION



11

Sensor Calibration

▪ ADC offsets

▪ Position Sensor Offset



12

ADC Offsets

1

2

.hex



13

ADC Offsets



14

ADC Offsets



15

ADC Offsets



16

Position Sensor Offset



17

▪ Plant modeling

– Sensors Calibration

– Motor Parameters Estimation

– Motor and Inverter Model

▪ Algorithm design with simulation

– Field-Oriented control

– Autotuning control gain 

– Verifying controller

▪ Software deployment

– Rapid control prototyping

– Code generation

– Hardware-In-The-Loop (HIL) test

Agenda

CALIBRATE SENSORS

ESTIMATE MOTOR PARAMETERS

MODEL MOTOR & INVERTER

DESIGN FOC ALGORITHM

TUNE CONTROLLER GAINS

GENERATE CODE

VALIDATE ON HARDWARE

VERIFY IN DESKTOP SIMULATION



18

Motor Parameters Estimation

Two types of parameter estimation methods:



19

Motor Parameters Estimation - Instrumented Test



20

Parameter Estimation Using Operation Data

Problem: Simulation data does not match measured data because the parameters are incorrect

Solution: Use to automatically tune model parameters



21



22

▪ Plant modeling

– Sensors Calibration

– Motor Parameters Estimation

– Motor and Inverter Model

▪ Algorithm design with simulation

– Field-Oriented control

– Autotuning control gain 

– Verifying controller

▪ Software deployment

– Rapid control prototyping

– Code generation

– Hardware-In-The-Loop (HIL) test

Agenda

CALIBRATE SENSORS

ESTIMATE MOTOR PARAMETERS

MODEL MOTOR & INVERTER

DESIGN FOC ALGORITHM

TUNE CONTROLLER GAINS

GENERATE CODE

VALIDATE ON HARDWARE

VERIFY IN DESKTOP SIMULATION



23

Motor and Inverter Modeling 

▪ Use linear lumped-parameter model shipped with 



24

Model Fidelity



26

Simscape Products

▪ Simscape platform

– Foundation libraries in many domains

– Language for defining custom blocks

▪ Extension of MATLAB

– Simulation engine and custom diagnostics

▪ Simscape add-on libraries

– Extend foundation domains with 

components, effects, parameterizations

– Multibody simulation

– Editing Mode permits use of add-ons

with Simscape license only

– Models can be converted to C code



27

Trade Off - Balance Model Fidelity vs Simulation Speed



▪ Plant modeling

– Sensors Calibration

– Motor Parameters Estimation

– Motor and Inverter Model

▪ Algorithm design with simulation

– Field-Oriented control

– Autotuning control gain 

– Verifying controller

▪ Software deployment

– Code generation

Agenda

CALIBRATE SENSORS

ESTIMATE MOTOR PARAMETERS

MODEL MOTOR & INVERTER

DESIGN FOC ALGORITHM

TUNE CONTROLLER GAINS

GENERATE CODE

VALIDATE ON HARDWARE

VERIFY IN DESKTOP SIMULATION



Modeling Field-Oriented Control (FOC)

Clarke transform (abc →αβ)

Park transform (αβ → dq)

Measured current (A,B,C) 

in time domain

Current control (d, q)



𝑑𝑢𝑡𝑦
𝑐𝑦𝑐𝑙𝑒𝑠

Modeling Field-Oriented Control (FOC)

𝑖𝑎

𝑖𝑏

𝑖𝑑

𝑖𝑞

𝜔𝑟𝑒𝑓
𝑇𝑟𝑒𝑓

𝜔

𝑣𝐷𝐶

𝜃𝑒

𝑖𝑑_𝑟𝑒𝑓

𝑖𝑞_𝑟𝑒𝑓

𝑣𝑑_𝑟𝑒𝑓

𝑣𝑞_𝑟𝑒𝑓

𝑣𝛼_𝑟𝑒𝑓

𝑣𝛽_𝑟𝑒𝑓
α β

α β



Modeling Field-Oriented Control (FOC)



Autotuning controller gains



Autotuning controller gains

▪ Algorithm details:

– Injects a few superimposed sine waves, 

while maintaining closed-loop operation 

– Collects plant input-output data

– Estimates frequency response in real-time

– Tunes PID parameters to satisfy desired 

bandwidth and phase margin

Plant

Closed-Loop 

PID Autotuner

PID 

Controller

test signal

outputref

tuned gains

▪ Initial stable PID controller is required

▪ Option to deploy autotuning to embedded processor using Simulink Coder™

Requires Simulink Control Design™



Autotuning controller gains

Autotuning

Motor speed is close to the nominal value while tuning



Autotuning controller gains



Autotuning controller gains



Verifying Controller

Simulation models are primary meant

to support V&V activities



Verifying Controller

Functional Testing

Textual

Requirements

Executable

Specification

Model used for 

production code 

generation

Generated 

C/C++ code

Object 

code

Modelling
Compilation 

and Linking

Code 

Generation

▪ Does design meet requirements

▪ Confirm correct design behavior

▪ Verify no unintended behavior



Verifying Controller

Author test-cases that are derived from requirements

– Use test harness to isolate component under test

– Test Sequence to create complex test scenarios

Manage tests, execution, results

– Re-use tests for regression

– Automate in Continuous Integration

systems such as Jenkins



Dynamic Testing Static Analysis

Verifying Controller

Interactive testing

Reactive Testing

Coverage Analysis

Code Testing

Edit-time checks

(Dead Logic Detection)

(Test Case Generation)

Requirement Proving

Code proving



Agenda

CALIBRATE SENSORS

ESTIMATE MOTOR PARAMETERS

MODEL MOTOR & INVERTER

DESIGN FOC ALGORITHM

TUNE CONTROLLER GAINS

GENERATE CODE

VALIDATE ON HARDWARE

VERIFY IN DESKTOP SIMULATION

▪ Plant modeling

– Sensors Calibration

– Motor Parameters Estimation

– Motor and Inverter Model

▪ Algorithm design with simulation

– Field-Oriented control

– Autotuning control gain 

– Verifying controller

▪ Software deployment

– Code generation



Core
Software

Algorithms 
and Logic

A B C

M



I NPUT

BLUE G REEN RED

PO W ER

RGBSplit-4BLACK BOX




V RCS

Input
Drivers

Output
Drivers

Special
Device
Drivers

Comm
Drivers

Scheduler/Operating System
And Support Utilities

Communication
Interfaces

Sensors

Actuators

Special
Interfaces

ASAP2

CCP

Most 

Development 

is on Core 

Software 

Algorithms

Simple Embedded Software Architecture



Embedded Software Project

Integrating Generated Controller Code with an Embedded 

Software Project

Execute at 20kHz

{

Controller

Command

ADC PWM

Encoder

Model Hand



Embedded Software Project Pseudo-Code

Integrate Generated Controller Code with Your Hand-Coded 

Software Project

interruptServiceRountine()

{

readAdcCountFromDriver();

readEncoderCountFromDriver();

controller();

writePwmCountToDriver();

}

main() 

{

adcInit();

encoderInit();

pwmInit();

controllerInit();

while(1) {

}

}

Model Hand



Embedded Coder Hardware Support Packages

Hardware Support Packages: https://www.mathworks.com/hardware-support/home.html

https://www.mathworks.com/hardware-support/home.html


MathWorks TI C2000 Support Package for Embedded Coder

Scheduling the generated code:

▪ Periodic tasks

▪ Idle tasks

▪ Interrupts (Hardware, Software)

▪ Advanced concepts:

– Pre-emptive rate-monotonic scheduler

– Base rate interrupt replacement

– Peripheral triggers (launch A/D 

conversion from PWM)

– Running on the CLA

– Loading in Flash, running in RAM

– Using DMA

Supported devices:

▪ F2802x/3x/5x/6x/07x/004x 

▪ F2833x/32x/37xS/37xD/38xS/38xD

▪ Fixed-point F280x/1x

F28379D LaunchPad



Supported TI C2000 drivers 

▪ ADC, AIO, Comparator, 

▪ GPIO, eQEP, ePWM, eCAP, 

▪ eCAN, I2C, SCI, SPI, LIN

▪ Watchdog, DMA

▪ Motor control position sensing

– Optical encoder (using eQEP)

– Hall sensors (using eCAP)

– Sensorless (using SMO)



Prepare the Model for Code Generation Using Supported TI C2000 

Drivers Blocks



Prepare the Model for Code Generation Using Supported TI C2000 

Drivers Blocks



Deployment on the Target

▪ Generate code (floating 

and fixed-point)

▪ Use host model to 

control and debug

▪ Validate on hardware



Fixed-Point conversion

▪ Run the tool on the 

system to convert

▪ Chose your conversion 

method



Fixed-Point conversion

▪ Prepare the environment

▪ Configure your options

▪ Accept or modify the 

datatype proposition



Fixed-Point conversion

▪ Run again with your 

new datatype

▪ Compare 

automatically with 

floating point results



Deployment on the Target

▪ Generate code (floating 

and fixed-point)

▪ Use host model to 

control and debug

▪ Validate on hardware



Software-In-the-Loop (SIL) Testing

Test 
Vectors

Desktop Simulation
(on PC)

Results

Model

Object Code 
Execution (on PC)

Results

Generated 
Code

Object File

Code
Generator

PC
Compiler

== ?

Compare

▪ Show equivalence, model to code

▪ Assess code execution time

▪ Collect code coverage



Software-In-the-Loop Test with Model Reference



Processor-In-the-Loop (PIL) Testing

Test 
Vectors

Desktop Simulation
(on PC)

Results

Model

Object Code 
Execution (on target)

Results

Generated 
Code

Object File

Code
Generator

Cross
Compiler

== ?

Compare

▪ Verify numerical equivalence

▪ Assess target execution time

▪ Collect on target code coverage



System & Test Model

Serial link

Processor-In-the-Loop (PIL) Testing
Verify Production Controller with Processor-in-the-loop

1 0 0 1 0 0

1 1 1 0 1 0

0 0 0 1 1 1

0 1 1 0 0 1

Algorithm

Open hardware 

Or Evaluation boards

Or Production Board



Verify and Profile Code Using Processor-In-the-Loop(PIL) Testing



Deployment on the Target

▪ Generate code (floating 

and fixed-point)

▪ Use host model to 

control and debug

▪ Validate on hardware



Code Generation and Real-Time Testing in Model-Based Design​

Code 
generation

Rapid Control 
Prototyping

Desktop
Simulation

HIL testing

Validation



Key Takeaways

▪ Model-based design for motor control enables you to make 50% faster time 

to market.

– Various fidelity modeling of motor and inverter using Simscape Electrical 

– Autotuning PI controller gains using optimization algorithm

▪ Motor Control Toolbox, a new product in R2020a, enables you to minimize 

development time using reference examples 

– Sensor calibration, built-in algorithmic blocks, automated parameter estimation, and 

gain-tuning

▪ Generate, deploy and validate production code



Q&A


