MATLAB EXPO 2016 KOREA

4월 28일 (목)

등록 하기 matlabexpo.co.kr

데이터 애널리틱스를 위한 머신 러닝 기법

Application Engineer 엄 준 상 과장

Machine Learning is Everywhere

- Image Recognition
- Speech Recognition
- Stock Prediction
- Medical Diagnosis
- Data Analytics
- Robotics
- and more...

Overview of Machine Learning in MATLAB

Challenges in Machine Learning Hard to get started

Steps	Challenge
Access, explore and analyze data	Data diversity Numeric, Images, Signals, Text – not always tabular
Preprocess data	Lack of domain tools Filtering and feature extraction Feature selection and transformation
Train models	Time consuming Train many models to find the "best"
Assess model performance	Avoid pitfalls Over Fitting Speed-Accuracy-Complexity tradeoffs
Iterate	

Faulty braking system leads to windmill disaster

Why perform predictive maintenance?

- Example: faulty braking system leads to windmill disaster
 - <u>https://youtu.be/-YJuFvjtM0s?t=39s</u>
- Wind turbines cost millions of dollars
- Failures can be dangerous
- Maintenance also very expensive and dangerous

Types of Maintenance

- Reactive Do maintenance once there's a problem
 - Example: replace car battery when it has a problem
 - Problem: unexpected failures can be expensive and potentially dangerous
- Scheduled Do maintenance at a regular rate
 - Example: change car's oil every 5,000 miles
 - Problem: unnecessary maintenance can be wasteful; may not eliminate all failures
- Predictive Forecast when problems will arise
 - Example: certain GM car models forecast problems with the battery, fuel pump, and starter motor
 - Problem: difficult to make accurate forecasts for complex equipment

Benefits of Predictive Maintenance

General

Anomaly detection

Fleet cartography

Control system

Mechanical health

Imbalance analysis Vibrations HF

Fleeting events

Sensors Monitoring Actuators Monitoring

Assisted troubleshooting Failure warnings

Fusion/Decision making

What Does Success Look Like?

Safran Engine Health Monitoring Solution

- Monitor Systems
 - Detect failure indicators
 - Predict time to maintenance
 - Identify components
- Improve Aircraft Availability
 - On time departures and arrivals
 - Plan and optimize maintenance
 - Reduce engine out-of-service time
- Reduce Maintenance Costs
 - Troubleshooting assistance
 - Limit secondary damage

Ignition capability

Start up monitoring Sparking plug monitoring

Engine systems monitored

Hydraulic system

Debris

Fuel system
- Smart filter
- Fuel pump

Smart filter

Consumption

Performance

Modular analysis

Thermodynamic cycle monitoring

http://www.mathworks.com/company/events/conferences/matlab-virtual-conference/

Predictive Maintenance of Turbofan Engine

Sensor data from 100 engines of the same model

Predict and fix failures before they arise

- Import and analyze historical sensor data
- Train model to predict when failures will occur
- Deploy model to run on live sensor data
- Predict failures in real time

Predictive Maintenance of Turbofan Engine

Sensor data from 100 engines of the same model

Scenario 1: No data from failures

- Performing scheduled maintenance
- No failures have occurred
- Maintenance crews tell us most engines could run for longer
- Can we be smarter about how to schedule maintenance without knowing what failure looks like?

Data provided by NASA PCoE http://ti.arc.nasa.gov/tech/dash/pcoe/prognostic-data-repository/

Principal Components Analysis – what is it doing?

Example Unsupervised Implementation

Round 2

MathWorks[®]

Historical

Predictive Maintenance of Turbofan Engine

Sensor data from 100 engines of the same model

Scenario 2: Have failure data

- Performing scheduled maintenance
- Failures still occurring (maybe by design)
- Search records for when failures occurred and gather data preceding the failure events
- Can we predict how long until failures will occur?

Machine Learning Workflo

Train: Iterate till you find the best model

Predict: Integrate trained models into applications

SHMTools Los Alamos National Laboratory

http://www.lanl.gov/projects/national-security-education-center/engineering/software/shm-datasets-and-software.php

MATLAB Strengths for Machine Learning

Challenge	Solution
Data diversity	Extensive data support Import and work with signal, images, financial, Textual, geospatial, and several others formats
Lack of domain tools	High-quality libraries Industry-standard algorithms for Finance, Statistics, Signal, Image processing & more
Time consuming	Interactive, app-driven workflows Focus on machine learning, not programing
Avoid pitfalls Over Fitting, Speed-Accuracy-Complexity	Integrated best practices Model validation tools built into app Rich documentation with step by step guidance
	Flexible architecture for customized workflows Complete machine learning platform

Deep Learning is Ubiquitous

Computer Vision

- Pedestrian and traffic sign detection
- Landmark identification
- Scene recognition
- Medical diagnosis and drug discovery

Text and Signal Processing

- Speech Recognition
- Speech & Text Translation

Robotics & Controls

and many more...

What is Deep Learning ?

Deep learning performs end-end learning by learning features, representations and tasks directly from images, text and sound

Demo: Live Object Recognition with Webcam

Why is Deep Learning so Popular ?

- Results: Achieved substantially better results on ImageNet large scale recognition challenge
 - 95% + accuracy on ImageNet 1000 class challenge
- **Computing Power:** GPU's and advances to processor technologies have enabled us to train networks on massive sets of data.
- Data: Availability of storage and access to large sets of labeled data
 - E.g. ImageNet , PASCAL VoC , Kaggle

Year	Error Rate
Pre-2012 (traditional computer vision and machine learning techniques)	> 25%
2012 (Deep Learning)	~ 15%
2015 (Deep Learning)	<5 %

Two Approaches for Deep Learning

1. Train a Deep Neural Network from Scratch

2. Fine-tune a pre-trained model (transfer learning)

Medium amounts of data

Convolutional Neural Networks

- Train "deep" neural networks on structured data (e.g. images, signals, text)
- Implements Feature Learning: Eliminates need for "hand crafted" features
- Trained using GPUs for performance

Convolution Layer

- Core building block of a CNN
- Convolve the filters sliding them across the input, computing the dot product

Intuition: learn filters that activate when they "see" some specific feature

Rectified Linear Unit (ReLU) Layer

- Frequently used in combination with Convolution layers
- Do not add complexity to the network
- Most popular choice: f(x) = max(0, x), activation is thresholded at 0

Pooling Layer

- Perform a downsampling operation across the spatial dimensions
- Goal: progressively decrease the size of the layers
- Max pooling and average pooling methods
- Popular choice: Max pooling with 2x2 filters, Stride = 2

Challenges using Deep Learning for Computer Vision

Steps	Challenge
Importing Data	Managing large sets of labeled images
Preprocessing	Resizing, Data augmentation
Choosing an architecture	Background in neural networks (deep learning)
Training and Classification	Computation intensive task (requires GPU)
Iterative design	

Demo Fine-tune a pre-trained model (transfer learning)

Demo

Fine-tune a pre-trained model (transfer learning)

📣 MATLAB R2016a								
HOME PLOTS APPS	EDITOR	PUBLISH	IEW				🚊 🕐 Search Documentatio	on 👂 🔼
New Open Save	Go To V Comment 20 Find V Indent 5 MIGATE ED	fx fx Image: Constraint of the second secon	Run Run and Advance	Run Section	Run and Time			
< 🔶 🔁 🔀 🐌 🕨 C: 🕨 Users 🕨 aneher	emia 🕨 Desktop 🕨 De	mos 🕨 TransferLearning 🕨						م -
Current Folder Workspace 💿 🗾	Zeditor - C:\Users\ane TwoClassTransferL	ehemia\Desktop\Demos\Tra earning.m 🗶 🕂	sferLearning\Two0	ClassTransferLearr	ing.m			⊙×
	1 8	% Fine Tuni	ng A De	ep Neur	al Net	work		
	2 8	This examp	le show	s how t	o fine	tune a pre-tra	ined deep co	nvoli_
	3 % neural network (CNN) for a new recognition task.							
	4							
	5							
	6 8	%% Load network						
	7 – c:	7 - cnnMatFile = fullfile(pwd, 'imagenet-cnn.mat');						
	8 - if ~exist(cnnMatFile,'file')							
	9 -	disp('Ru	n downl	oadAndE	repare	CNN.m to downlo	ad and prepa	re tr
	<1 <u>^</u>	t.	1	III				
c	Command Window							۲
ز ا	<i>fx</i> ; >>							
						script	Ln	4 Col 1

Addressing Challenges in Deep Learning for Computer Vision

Challenge	Solution
Managing large sets of labeled images	<pre>imageSet or imageDataStore to handle large sets of images</pre>
Resizing, Data augmentation	imresize, imcrop, imadjust, imageInputLayer, etC.
Background in neural networks (deep learning)	Intuitive interfaces, well-documented architectures and examples
Computation intensive task (requires GPU)	Training supported on GPUs No GPU expertise is required
	Automate. Offload computations to a cluster and test multiple architectures

Key Takeaways

- MATLAB enables engineers and data scientists to quickly create, test and implement predictive maintenance programs
- Predictive maintenance
 - Saves money for equipment operators
 - Increases reliability and safety of equipment
 - Creates opportunities for new services that equipment manufacturers can provide
- Consider Deep Learning when:
 - Accuracy of traditional classifiers is not sufficient
 - ImageNet classification problem
 - You have a pre-trained network that can be fine-tuned
 - Too many image categories (100s 1000s or more)
 - Face recognition

