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Model Monitoring and Drift Detection: Ensuring the Health and Fairness of Deployed 

Models  

The paper focuses on maintaining the integrity and fairness of machine learning models as they are increasingly used in 

decision-making. It emphasizes the importance of implementing fairness metrics and drift detection mechanisms to ensure 

models remain unbiased and accurate over time. The paper discusses the role of global regulations in promoting responsible 

AI, the utility of dashboards for real-time model monitoring, and the necessity of automated alerts for timely interventions. It 

also highlights the significance of a continuous, proactive approach to model risk management (MRM), which includes the 

integration of tools like Modelscape for comprehensive oversight and the operationalization of model performance, relevance, 

and fairness throughout the model lifecycle.  

Model Monitoring: A Necessity, not a Choice 

Effective model monitoring is essential for the success of machine 

learning (ML) models, especially as they face rapidly changing 

environments and adaptive challenges. The dynamic nature of ML 

models requires constant vigilance to ensure they remain accurate 

and effective. Regulatory expectations, such as those outlined in 

the PRA's SS3/18 paper, already emphasize the importance of 

model monitoring. The COVID-19 pandemic highlighted the need 

for this, as many models based on pre-pandemic assumptions 

required adjustments. Using model overlays, where expert 

judgment is applied to modify outputs, is a common mitigation 

strategy. However, uncoordinated changes across interconnected 

models can lead to failures. Therefore, ongoing, and timely 

adjustments are crucial, not just periodic revalidations, to maintain 

the integrity and performance of ML models in the face of evolving 

conditions. 

 

Figure 1: The model lifecycle as mentioned in SS/123 

Advancing Model Integrity with Fairness 

Metrics and Drift Detection 

As machine learning models become integral to decision-making, 

maintaining their integrity through fairness metrics and drift 

detection is crucial. These measures are increasingly recognized 

in global regulations, such as the Monetary Authority of 

Singapore's FEAT principles (Fairness, Ethics, Accountability, 

Transparency) and the European AI Act. Additionally, the Federal 

Reserve in the United States is paying closer attention to these 

aspects in AI and ML models. An EY white paper underscores the 

concept of responsible AI, positioning it at the heart of trustworthy 

AI systems, surrounded by various critical factors, with today's 

focus being specifically on model performance. 

 

Figure 2: EY’s Five Attributes of Responsible AI 

Dashboards enable Dynamic MRM 

Dashboards have become a pivotal tool in managing model risk by 

providing real-time insights and acting as an early warning system 

for model performance issues. They enable the detection of data 

drift and help ensure fairness, confirming that models operate 

without bias. They offer a centralized view of performance and 

risks and help organizations coordinate responses to issues that 

may affect not just a single model but a suite of interconnected 

models, thereby mitigating the risk of uncoordinated actions that 

could impact model integrity and business operations. 

 

Figure 3: A Centralized View Dashboard of Performance 

and Risks 

https://www.bankofengland.co.uk/-/media/boe/files/prudential-regulation/supervisory-statement/2023/ss123.pdf
https://assets.ey.com/content/dam/ey-sites/ey-com/en_gl/topics/digital/ey-how-do-you-teach-ai-the-value-of-trust.pdf
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Timely Alerts Mitigate Risk by Prompting 

Immediate Action  

Automated alerts are crucial for timely interventions in model 

monitoring, ensuring that any deviations or issues are addressed 

promptly within the governance and development processes. 

Embedding these alerts into model risk management allows for a 

proactive approach to maintaining model integrity. Dashboards are 

useful tools for monitoring, but their effectiveness is contingent on 

active observation. Automated alert systems are necessary to 

notify relevant stakeholders for immediate action. These systems 

should facilitate not just the production but also the consumption 

of alerts, such as those indicating model bias or data drift. The 

incorporation of a comprehensive observability framework, as 

illustrated by the integration of microservices, Kubernetes, and 

cloud infrastructure with an Open Telemetry Collector in the 

system architecture, enhances the precision and scope of such 

alerts (Figure 4). The alerts can trigger various responses, like 

recalibration or redevelopment of models. This approach 

completes the model risk management lifecycle, ensuring models 

remain accurate and reliable. This overview emphasizes the shift 

from viewing model monitoring as a periodic check to recognizing 

it as a continuous, integral process that drives improvements 

through timely alerts. 

 

Figure 4: Cloud Observability with Open Telemetry 

Enhancing Trust in Models through Drift and 

Fairness Monitoring 

Drift refers to the changes in data patterns over time, which can be 

sudden or gradual (Figure 5), affecting the model's performance. It 

is essential to detect and adjust for these changes to ensure the 

model's current relevance. Fairness, on the other hand, involves 

assessing the model's decisions across different groups, 

potentially divided by protected attributes like gender or race, to 

ensure unbiased outcomes. By actively observing and addressing 

both drift and fairness, one can significantly improve the integrity 

and fairness of their models, thereby fostering greater trust in their 

applications.

 
Source: https://arxiv.org/pdf/2004.05785.pdf 

Figure 5: An Example of concept drift types. 

Example: NYC House Price Data 

 

Figure 6: NYC House Prices 2015 

The New York City House price dataset for 2015 presents a classic 

structure where each row represents an observation and each 

column stands for a variable, with a mix of categorical and numeric 

types. Notably, the 'sales date' column introduces a temporal 

element, marking when each observation occurred. In building a 

machine learning model, it is common to treat each row individually 

and initially disregard the 'sales date', which can be a reasonable 

starting approach. However, if the variables' distribution shifts over 

time, and 'sales date' is the only temporal indicator, the model may 

be prone to drift. This highlights the importance of considering 

temporal changes, especially when predicting binary outcomes like 

whether a property was sold, to ensure the model remains robust 

over time. 

Continuous Monitoring Protects Against 

Model Decay 

We will start by training the model, followed by careful observation 

to identify any issues that arise during its operation. Once problems 

are detected, the final step is to implement corrective actions to 

rectify the performance issues.  

https://arxiv.org/pdf/2004.05785.pdf
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Figure 7: Data Drift Three Steps Forumula 

The Classification Learner App is a great asset when it comes 

to model training within MATLAB. After loading our model into the 

app, it meticulously processes the datasets, applying rigorous 

best-in-practice techniques like cross-validation, which are 

instrumental in mitigating the risk of overfitting. This ensures that 

the model's predictive power is genuine and not just an artifact of 

the noise within the training data. While we work under the 

assumption that our model is stationary, the Classification Learner 

app aids us in efficiently building a simple decision tree. This 

decision tree, though fundamental in structure, is optimized for 

performance by the app's algorithms and user-friendly interface, 

which simplifies the complexities of machine learning workflows. 

The app's value lies in its ability to not only develop models but 

also to understand and improve them interactively. 

 

Figure 8: NYC Sales Prediction Model 

The analysis involves assessing the accuracy of a model in 

predicting house sales on specific dates, acknowledging that the 

housing market is unpredictable with a noisy signal but exhibits a 

clear trend. The model's accuracy, initially around 73%, appears to 

decline over time. To address this, a strategy called incremental 

machine learning is suggested, where new data is periodically 

added to the model to maintain its relevance. Additionally, 

weighting can be applied to give more importance to recent data, 

as part of a strategy to adapt the model to changing market 

conditions. 

 

Figure 9: NYC Sales Prediction Model with Updated 

Weekly Accuracy 

An updated model was applied to the same dataset after the 

original model experienced significant drift and exceeded 

acceptable thresholds. The model was retrained, leading to an 

immediate improvement in accuracy, which was maintained over 

time. Corrective actions taken in Week 40 ensured that the model's 

performance by the end of the year remained stable and less prone 

to data drift, sustaining its original performance level. 

In Summary, the workflow discussed involves a three-step process 

for managing a binary classification model: 

1. Determine the metric to measure, which in this case is the 

accuracy of the model's predictions. 

2. Establish a threshold for action; if the model's accuracy falls 

below 73%, it triggers a retraining of the model. 

3. Once the model is retrained due to a significant drop in accuracy, 

it is redeployed, resulting in improved performance. 

Instrumentation and Alerting in Model 

Production 

 

Figure 10: NYC Housing Predictive Analysis and Real-

Time Data Fluctuations 

To ensure models perform well in production, they are 

instrumented with metrics that can alert developers to issues such 

as data drift. Using tools like MATLAB, models can be set up to 

send metrics to databases, allowing for real-time monitoring. For 

instance, if data drift is detected, the model can be adjusted to 

https://www.mathworks.com/help/stats/train-classification-models-in-classification-learner-app.html
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smooth out the noisy signals and set thresholds to trigger alerts. 

Modelscape, a Model Risk Management solution, supports various 

databases and allows developers to experiment with alerting 

systems before deployment. Alerts can be configured to notify the 

appropriate teams, and strategies for handling multiple or false 

alerts include grouping similar alerts and suppressing or silencing 

known issues. It's also important to consider external factors 

affecting model performance, such as system utilization and 

execution delays, which underscores the need for a 

comprehensive approach to model monitoring that extends beyond 

the development phase. 

Integrating DevOps in AI/ML Model Monitoring 

When analyzing time series data for spikes that may impact model 

performance, it's essential not only to consider model-specific 

metrics, such as drift and fairness but also the operational aspects 

like execution time and data throughput. This requires a 

comprehensive DevOps infrastructure that continuously monitors 

and measures model properties over time. Model developers are 

tasked with creating the necessary instrumentation within their 

models and collaborating with DevOps teams to ensure these 

models are integrated into a larger monitoring platform. Tools like 

Prometheus can be used to collect telemetry data, allowing for 

real-time queries about model performance. Companies like 

MathWorks offer solutions like Modelscape to facilitate this 

process. Ultimately, the observability of models—a concept 

borrowed from DevOps—combines both instrumentation and 

telemetry, enabling DevOps teams to monitor models effectively 

and provide valuable feedback to business users and developers, 

aligning with model governance and development protocols. 

Modelscape Solution 

 

Figure 11: MathWorks Modelscape Dashboard 

Modelscape allows for an organization-wide overview of all 

models, enabling the creation of dashboards for high-level insights 

and the ability to delve into specific models for detailed analysis. 

The system integrates alerts from the monitoring system, flagging 

issues for models pending approval and for those in operation. 

Each alert can be assigned a creation date and severity level, 

either automatically or through manual review, and tracked within 

the model governance process. This process determines whether 

a model should be adjusted or completely redeveloped. Model 

monitoring thus serves as a crucial feedback mechanism, 

informing governance and development to enhance model 

performance, relevance, and fairness. 

Finally: Ensure the Health and Fairness of 

Deployed Models using Modelscape 

MathWorks has developed Modelscape, a comprehensive solution 

that tackles the challenges of model fairness and data drift. 

Modelscape Monitor offers out-of-the-box features such as 

threshold setting, alerts, and dashboard creation for performance 

review. It supports model refinement based on production data and 

informs governance decisions, like whether to update or retire 

models. Additionally, Modelscape aids the entire modeling 

lifecycle, including validation in live environments, preproduction 

testing, and deployment. This holistic monitoring strategy 

enhances risk management and operational efficiency.  

 

Figure 12: Model Risk Management Lifecycle 

 

» Learn more: mathworks.com/modelscape 

 

 

 

 

https://www.mathworks.com/solutions/finance-and-risk-management/model-risk-management/model-risk-management-lifecycle.html?s_eid=EML_24406
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