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ABSTRACT 

For many mission critical systems, demonstrating that all 

requirements have been met via a set of requirements-based 

tests is often mandated by internal processes or external 

standards. Traditional coverage approaches, however, do not 

address this mandate because they measure only the coverage 

of the design by determining which paths in the design have 

been executed.  Determining whether a given set of test 

vectors covers the design requirements (as opposed to merely 

covering the design) is a challenge.   

Creating a set of test vectors to cover the requirements can be 

difficult and time consuming.  Using techniques first identified 

in the 1970s and modern Model-Based Design tools, we 

present a novel approach, based on work presented in [2], to 

automatically generate a set of requirements-based test 

vectors.  In this paper, we discuss how requirements captured 

in a natural language can be modeled using Cause-Effect 

graphs, introduced in [1].  We then translate the Cause-Effect 

graph into Simulink® and Stateflow® to identify conflicting 

requirements and automatically generate a set of test vectors 

that can be assessed for completeness using coverage 

objectives such as Modified Condition/Decision Coverage 

(MCDC). We apply the same test vectors to the design model, 

which can be developed independently from the original 

requirements.  This approach enables engineers to determine if 

their design is sufficiently covered by the set of requirements-

based test vectors.   Any parts of the design not covered must 

be investigated further to determine if the design elements 

should exist or if there is a problem with the requirements. 

INTRODUCTION 

The software that runs mission critical systems on modern 

automobiles, aircraft, and spacecraft is composed of millions 

of lines of code. Verifying that such software meets its design 

requirements is a significant challenge.  To test software, 

engineers typically employ requirements-based and/or 

coverage-based methodologies.  

In requirements-based testing, a set of test vectors and 

expected outputs are developed based on the requirements.  

These tests typically are written with the goal of fully testing 

all of the requirements.  However, the completeness of the 

tests is difficult to measure because some requirements can be 

verified by a single test while others require a set of tests to 

verify.  Moreover, even when a full set of requirements-based 

tests are applied to a design, this does not guarantee that the 

entire design has been tested or that there is no unintended 

functionality in the design.    

In coverage-based testing, testers develop a set of test vectors 

with the goal of fully executing the design so that all design 

functionality is excited and unreachable portions of the design 

are identified.   However, creating a set of test vectors that 

fully execute the design can be time consuming and does not 

guarantee that all of the requirements have been met.  It can 

also be challenging to trace test vectors to the original 

requirements to identify which requirements have been tested.   

One way to have the best of both approaches is to create a set 

of test vectors that cover the requirements and measure 

whether these tests execute or cover the design based on a 

criterion of coverage such as MCDC. 

For a number of years, engineers have sought to use models to 

capture requirements in a style that is unique and distinct from 

the design models traditionally used in Model-Based Design.  

Such models are often referred to as requirements models to 

differentiate them from design models.   

The term requirements model has several definitions, 

including some closely related to the system level architecture.  

For the purpose of this paper, requirements modeling refers to 

how to model the input-output relationship expressed in 

requirements via “shalls”.  A simple example of a “shall” is: 

When A occurs, then the system shall B.  Requirements models 

typically fall into one of two broad groups:  

 Input-output descriptions, in which only the input and 

output are described in the model  

 Higher level abstraction descriptions, in which a high 

level or abstract dynamic or logic model of the 
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system is included in the requirements model and the 

expected output can be computed from the 

requirements model, based on the input. 

The goal of requirements models is to capture the functional 

requirement in a clear, concise, analyzable and executable 

manner, which is typically not possible with natural language. 

The requirements models can then be used to evaluate the 

interaction and compatibility of requirements from disparate 

sources as well as to develop tests and acceptance criteria (or 

expected outputs).  The use of the requirements models for test 

creation enables engineers to assess the completeness of the 

tests using different notions of coverage on the requirements 

model such as Function coverage, Statement coverage, 

Decision coverage, Condition coverage, or Modified 

Condition/Decision Coverage (MCDC). 

Requirements models have traditionally been less detailed 

models of the desired behavior that can be elaborated and 

developed into design models by design engineers [4,5].  This 

approach relies on the interpretation of the engineer to convert 

the natural language requirement into the abstract level design, 

which can result in a single point failure if the interpretation is 

incorrect.  Recently, engineers have begun to develop models 

of the requirements that capture only the relationship between 

the test and the expected output (or input-output relationship).  

More importantly these models are developed independently 

from the design models by different engineers using different 

modeling styles. The potential single-point interpretation 

failure mode is reduced because one group of engineers 

develops requirements models from which the tests and 

expected outputs are generated and another group develops 

design models to which these tests can be applied and the 

independent results can be compared as shown in Figure 1. 

Several modeling styles are available for capturing the input-

output relationship of a requirement.  This paper focuses on 

how requirements expressed in a natural language can be 

modeled using Cause-Effect graphs coupled with the expected 

output, to create a requirements model. The relationship 

between the test input and expected output can be captured by 

an additional portion of the requirements model that may 

contain a simple input-output relationship or abstract models 

of the dynamics or logic, so that the input-output relationship 

can be computed.  The portion of the requirements model 

which captures the expected outputs is called the test oracle. 

 

 

Figure 1: Workflow comparing results of design and 

requirements models. 

In the paper, we also describe how the Cause-Effect graphs 

can be captured in models using Simulink and Stateflow and 

then analyzed using Simulink Design Verifier™ to create a set 

of test vectors to achieve requirements model coverage 

objectives, such as Condition, Decision, and Modified 

Condition/Decision (MCDC). 

CAUSE-EFFECT GRAPHS 

Cause-Effect graphing is a modeling method, introduced in 

1979 by Glenford J. Myers in The Art of Software Testing, 

through which a natural language specification can be 

formally mapped.  Cause-Effect graphing maps inputs to 

outputs with a set of constraints.  In this context, a cause is a 

distinct input condition or equivalence class of input 

conditions, and an effect is an active condition or applicable 

requirement.  In a Cause-Effect graph, inputs (causes) and 

requirements (effects) are the nodes of the graph. Typically, 

the graphs are drawn with causes on the left, effects on the 

right, and the logical relationships between them graphed on 

lines using the notation shown in Figure 2.   
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In Figure 2, the Cause-Effect graph provides a diagrammatic 

view of the relationship between input (cause) and expected 

output (effect) specified by the requirement.  The Cause-Effect 

graph can be used to derive test cases.  For the above example, 

test cases are created based on one input condition 

(CP_knob_roll within norm) and a second input condition 

(AP_sw On) resulting in an effect (AP_setpt = CP_knob_roll).  

The advantage of Cause-Effect graphing is that the graphs 

enable the tester to formally represent the requirements and 

systematically create test cases based on those requirements.   

For this paper, we applied Cause-Effect graphing to develop a 

set of requirements based tests using the requirements 

introduced in [4].  This example has a design model that the 

author developed based on the requirements.   We will apply 

test cases developed using Cause-Effect graphs to the design 

model from the original paper to assess the completeness of 

the tests on the design.  Our goal is to use techniques as 

outlined by [2] to gain greater insight on the benefits of using 

requirements modeling in a Model-Based Design 

environment. 

EXAMPLE – AUTOPILOT ROLL 

CONTROL 

In [3], the author introduced a set of natural language 

functional requirements for an aircraft autopilot.  In this 

example, these requirements are used to illustrate how Cause-

Effect graphs can be applied to manually create a requirements 

model and how this model can be used to automatically 

generate requirements-based test vectors.   

 

When considering a single requirement, this approach seems 

simple to implement.  However, the systems that engineers 

design today have thousands of requirements, making the task 

significantly more complex. As shown in Figure 3, the Cause-

Effect graphing for the requirements document in [3] is much 

more complicated than the example shown in Figure 2. 

As the number of requirements increases along with their 

complexity and the intricacy of the interaction between 

requirements, it is easy to see the challenge of creating 

sufficient and meaningful test cases to verify that a given 

design meets all requirements—especially since each 

transition line can represent multiple test cases.   

Structured methodologies such as Cause-Effect graphing 

provide a basis for systematically developing and tracking test 

cases, but the process of manually creating test cases can be 

tedious.  State charts can be used to address this issue. For 

example, the manually created Cause-Effect graph shown in 

Figure 3 can be represented by an equivalent flowchart or 

stateless state chart using Stateflow.  The Cause-Effect 

representation shown in this paper adopts the modeling style 

developed by John Deere [2].  This particular flowchart 

modeling style was developed to work with Simulink Design 

Verifier for test case generation. 

 

Figure 2: Cause-Effect Graph of a Requirement 
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Here are some key characteristics of this modeling style 

(extending the example Cause-Effect graph shown in Figure 

2): 

1. The Cause-Effect graph is split between two different 

models, shown in Figure 4.  We call the “cause” and 

“effect” portion of the model the reference model, and the 

“expected output” portion the test oracle. 

2. The reference model is further divided into two sections, 

shown in Figure 5.  The first section parses the input 

signals into equivalence classes, and the second section 

takes the equivalence class inputs and determines which 

of the requirements are being activated.   In this example, 

one equivalence class is the Cockpit turn knob command 

within +/- 30 degree and greater than +/- 3 degrees.  Then 

the requirement being activated is that “the roll reference 

equal Cockpit turn knob value,” which is TRUE when the 

equivalence class defined above and AP (Autopilot) 

switch ON are both TRUE.   

3. Based on the active requirement, the test oracle then 

calculates the expected output.  In this example, the 

expected output of the Autopilot set point is equal to the 

Cockpit turn knob command when the corresponding 

requirement is TRUE, as shown in Figure 6. 

4. Both the reference model and the test oracle use flowchart 

syntax to model the cause and effect relationship. 

Once the requirement model is completed, it is augmented 

with blocks from the Simulink Design Verifier to better 

constrain the test vectors. 

 

 

 

Figure 3: Cause-Effect Graph of Auto Pilot Example 
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Figure 4: Structure of Cause-Effect graph 

 

Figure 5: Equivalence Classes and Active Requirements 

 

 

Figure 6: Expected output calculated by the test oracle 

 

 

Figure 7: Additional Constraint or "C" Blocks 
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In Figure 7 the “C” blocks on the signal lines are used to 

achieve the following: 

1. The “C” block labeled “1” controls the input signal such 

that it can only be either True or False. 

2. The “C” block labeled “2” controls the input signal such 

that it can only be in the range of -40 to +40 degrees. 

3. The “C” block labeled “3” enforces that the requirement 

associated with that signal (AP_disable_REQ) will always 

be True during test generation.  Because this output is 

always set to True, conflicting requirements will show up 

as an “unreachable” path.   

Continuing the autopilot example shown above from [3], the 

Cause-Effect graph of the autopilot requirements is manually 

translated into a model using Stateflow and used as input to 

generate test cases using Simulink Design Verifier. 

The flowchart reference model of the autopilot requirements 

graphed in Figure 3 is shown in Figure 8 and the test oracle is 

shown in Figure 9. 

 

Figure 9: Test Oracle 

 

Figure 8: Requirements Model 
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Once complete, the reference model can be used as input to 

Simulink Design Verifier to generate test cases.  The type of 

test cases can be customized via special property blocks, 

which add constraints to the model.  The “C” block described 

above, and shown in Figure 7, is an example of such a 

constraint.  For example, a standard set of test cases can be 

generated to achieve model coverage objectives of the 

requirements model.  Additionally, a customized constraint 

can be added to the model to provide a specification on a 

signal’s initial condition, and the test vectors can be generated 

to satisfy this constraint. 

A more rigorous approach, as suggested in [2], is to create a 

set of MCDC test cases, while holding each of the reference 

model outputs (individual requirements) True.  This approach 

provides two important advantages:   

 It draws attention to potential errors. If a requirement (or 

objective) on a branch of the requirements model is 

unreachable, then this requirement is mutually exclusive 

from the others on the branch.  A review of such a result 

would highlight potential error that may occur while 

creating the model.   

 It systematically creates more test cases, which can 

identify errors that might otherwise have been missed 

using a manual test creation process.  Since the test oracle 

provides the expected output or results, simulation results 

from these test cases can be automatically or 

programmatically analyzed allowing engineers to focus 

on only those test cases where there is a discrepancy 

between the two models).).  As a result, running 

additional test cases, including field recorded data and 

random noise tests, will not add significant analysis time.   

 

Once test cases have been created, they are placed inside a test 

harness model along with the reference model and test oracle, 

as shown in Figure 10.  The same test vectors fed into the 

requirements model are then fed into the design model and the 

outputs are compared.     

The output of the test oracle and design model should be 

identical.  If they are not, then there is a discrepancy between 

the requirement and the design.  A discrepancy does not imply 

that the requirement is not met, but each discrepancy does 

need to be investigated.  The requirements model might itself 

contain errors, just as the design model can, since they are 

both built manually.  The key point is that the probability of 

both independent modelers making the same error with 

different modeling approaches at the same point is low. 

As a final check, engineers can run the generated test vectors 

on the design models and measure the model-level coverage. 

Since the test cases were generated from the requirements 

model, it can be reasoned that if the requirements model was 

100% covered by the test vectors then applying them to the 

design model should result in 100% coverage of the design 

model.  If it does not, then some unintended functionality may 

 

Figure 10: Test Harness Model 
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have been included in the design.  Failing to achieve 100% 

coverage may also point to incomplete requirements or 

missing derived requirements. 

 

RESULT 

By comparing the coverage analysis between the requirement 

model and design model in [3], we found the following issues: 

1. Missing coverage objective.   

Applying the set of automatically generated test cases 

from the requirements model to the design model revealed 

missing coverage in the design model.  Upon further 

analysis it was determined that three high level 

requirements, listed below, were not detailed enough to 

create the requirements model with sufficient content to 

match that of the design model. 

 Steady state roll commands shall be tracked within 1 

degree in calm air. 

 Response to roll step commands shall not exceed 

10% overshoot in calm air. 

 Small signal (<3 degree) roll bandwidth shall be at 

least 0.5 rad/sec. 

To meet the performance requirements listed above, the 

design model must include a closed-loop feedback 

algorithm, as shown in Figure 11.  The need for the added 

structure was identified when the test cases were 

generated from the requirements model and several 

blocks were not covered (see Figure 11) and three inputs 

were missing (see Figure 10).  Since the existence of the 

closed-loop feedback is not specified in the system-level 

requirements, both the feedback signals (inputs) and the 

elements of the feedback algorithm were not covered by 

the tests generated from the system level requirements 

model.  The uncovered elements include logic and 

saturation blocks circled in Figure 11.  When the 

additional requirements for the structure of the feedback 

are added, the missing inputs are generated using the 

approach discussed in this paper.  

2. Test oracle and design model output mismatch. 

The output of the test oracle and the design model were 

different under the following conditions: 

 Autopilot switch was engaged from time = 0. 

 Set point for autopilot while autopilot is not engaged. 

In this case, there is either an implicit assumption about 

the behavior at time=0 or some presumption of manual 

override.  It is important to note that this approach 

highlighted the disconnect between the requirements and 

the design for these conditions. 

CONCLUSIONS 

We draw the following conclusions from this work: 

 The modeling style used for Cause-Effect graphing is 

sufficiently different from those used in design models 

that it may provide independence between development 

and verification paths.  For engineers, the use of this 

modeling style keeps the focus on requirements, and not 

on design or implementation. 

 When generating test cases and holding each of the output 

signals to be True, various mutually exclusive 

requirements were deemed unreachable.  This provides a 

systematic way of analyzing each requirement and its 

exclusivity with respect to other requirements.  For 

example, the requirement states that the roll mode of 

Autopilot can only be active when no other lateral mode 

is active.  This is verified when generating test cases 

 

Figure 11: Feedback Algorithm 

Note: blocks circled have missing coverage 

information
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while constraining the roll mode to be True; in this case 

the heading mode switch logic path was shown as 

unreachable.   

 Cause-Effect graphing can be one way to systematically 

track each requirement (and its interaction with other 

requirements) as one builds a graphical representation or a 

model of the requirement. 

 Cause-Effect graphing can be time consuming.  However, 

this initial time investment can be recouped via: 

o Avoiding potential rework at later development 

stages. Upfront requirements analysis can save 

thousands of hours on a typical industrial project [6].  

o Automatically generating tests from the requirements 

models. 

o Automating the review of test results via comparison 

with the test oracle. 

 The Cause-Effect graphing method (and test generation), 

while applicable to system level requirements, may lead 

to less than 100% coverage of a design model due to 

derived requirements.  As a result, the application of 

Cause-Effect graphing is sometimes more straightforward 

for low level requirements than for system level 

requirements.  For high level requirements, the output 

usually has a greater tolerance, with many of the lower 

level requirements left to the interpretation of the 

algorithm designer.  This in turn makes the coverage 

comparison more nuanced and output comparison more 

prone to acceptable differences.  As a result, some 

engineers may focus their use of Cause-Effect graphing 

only on low level requirements.  The requirement model 

may need to be elaborated—like the design model—

throughout the development cycle. 

 Cause-Effect graphing is one form of requirements 

modeling that can be paired in a straightforward manner 

with automatic test generation.  An extension of the 

requirements model can be also be viewed from the 

perspective of test generation.  Modeling constructs such 

as boundary values, signal initialization, and so on can be 

added, making it possible to generate test cases from the 

models with tools such as Simulink Design Verifier.  This 

potential makes reuse of test vectors much easier and 

review and modification process much easier as well.   

 Lastly, using the test oracle, the review of the test results 

with the expected outputs can be automated. 

 

REFERENCES 

1. Myers, Glenford J., The Art of Software Testing, 2
nd

 

Eddition, John Wiley & Sons, Inc., Hoboken, New Jersey,  

2004 

2. Ross, Jim, 2013 SAE World Congress Technical Track - 

AE316, “Requirement-based Test Case Generation and 

Coverage Analysis” 

3. Potter, Bill,  Model-Based Design for DO-178B 2008 

MathWorks News Letter, 

http://www.mathworks.com/company/newsletters/articles/

model-based-design-for-do-178b.html 

4. Barnard, Paul, Graphical Techniques for Aircraft 

Dynamic Model Development, 2004 AIAA  

5. Yang, J., Bauman, J., and Beydoun, A., "Requirement 

Analysis and Development using MATLAB 

Models," SAE Int. J. Passeng. Cars - Electron. Electr. 

Syst. 2(1):430-437, 2009, doi:10.4271/2009-01-1548. 

6. Lin, Joy, Measuring Return on Investment of Model-

Based Design, MathWorks White Paper, 

http://www.mathworks.com/model-based-design/mbd-roi-

video/Measuring_ROI_of_MBD.pdf 

CONTACT INFORMATION 

All contact should be directed to Jon Friedman – email: 

jon.friedman@mathworks.com. 

 

http://www.mathworks.com/company/newsletters/articles/model-based-design-for-do-178b.html
http://www.mathworks.com/company/newsletters/articles/model-based-design-for-do-178b.html
http://www.mathworks.com/model-based-design/mbd-roi-video/Measuring_ROI_of_MBD.pdf
http://www.mathworks.com/model-based-design/mbd-roi-video/Measuring_ROI_of_MBD.pdf

