
Page 1 of 9

2013-01-2237

Requirements Modeling and Automated Requirements-Based Test

Generation

John Lee and Jon Friedman
MathWorks

Copyright © 2014 SAE International

ABSTRACT

For many mission critical systems, demonstrating that all

requirements have been met via a set of requirements-based

tests is often mandated by internal processes or external

standards. Traditional coverage approaches, however, do not

address this mandate because they measure only the coverage

of the design by determining which paths in the design have

been executed. Determining whether a given set of test

vectors covers the design requirements (as opposed to merely

covering the design) is a challenge.

Creating a set of test vectors to cover the requirements can be

difficult and time consuming. Using techniques first identified

in the 1970s and modern Model-Based Design tools, we

present a novel approach, based on work presented in [2], to

automatically generate a set of requirements-based test

vectors. In this paper, we discuss how requirements captured

in a natural language can be modeled using Cause-Effect

graphs, introduced in [1]. We then translate the Cause-Effect

graph into Simulink® and Stateflow® to identify conflicting

requirements and automatically generate a set of test vectors

that can be assessed for completeness using coverage

objectives such as Modified Condition/Decision Coverage

(MCDC). We apply the same test vectors to the design model,

which can be developed independently from the original

requirements. This approach enables engineers to determine if

their design is sufficiently covered by the set of requirements-

based test vectors. Any parts of the design not covered must

be investigated further to determine if the design elements

should exist or if there is a problem with the requirements.

INTRODUCTION

The software that runs mission critical systems on modern

automobiles, aircraft, and spacecraft is composed of millions

of lines of code. Verifying that such software meets its design

requirements is a significant challenge. To test software,

engineers typically employ requirements-based and/or

coverage-based methodologies.

In requirements-based testing, a set of test vectors and

expected outputs are developed based on the requirements.

These tests typically are written with the goal of fully testing

all of the requirements. However, the completeness of the

tests is difficult to measure because some requirements can be

verified by a single test while others require a set of tests to

verify. Moreover, even when a full set of requirements-based

tests are applied to a design, this does not guarantee that the

entire design has been tested or that there is no unintended

functionality in the design.

In coverage-based testing, testers develop a set of test vectors

with the goal of fully executing the design so that all design

functionality is excited and unreachable portions of the design

are identified. However, creating a set of test vectors that

fully execute the design can be time consuming and does not

guarantee that all of the requirements have been met. It can

also be challenging to trace test vectors to the original

requirements to identify which requirements have been tested.

One way to have the best of both approaches is to create a set

of test vectors that cover the requirements and measure

whether these tests execute or cover the design based on a

criterion of coverage such as MCDC.

For a number of years, engineers have sought to use models to

capture requirements in a style that is unique and distinct from

the design models traditionally used in Model-Based Design.

Such models are often referred to as requirements models to

differentiate them from design models.

The term requirements model has several definitions,

including some closely related to the system level architecture.

For the purpose of this paper, requirements modeling refers to

how to model the input-output relationship expressed in

requirements via “shalls”. A simple example of a “shall” is:

When A occurs, then the system shall B. Requirements models

typically fall into one of two broad groups:

 Input-output descriptions, in which only the input and

output are described in the model

 Higher level abstraction descriptions, in which a high

level or abstract dynamic or logic model of the

Page 2 of 9

system is included in the requirements model and the

expected output can be computed from the

requirements model, based on the input.

The goal of requirements models is to capture the functional

requirement in a clear, concise, analyzable and executable

manner, which is typically not possible with natural language.

The requirements models can then be used to evaluate the

interaction and compatibility of requirements from disparate

sources as well as to develop tests and acceptance criteria (or

expected outputs). The use of the requirements models for test

creation enables engineers to assess the completeness of the

tests using different notions of coverage on the requirements

model such as Function coverage, Statement coverage,

Decision coverage, Condition coverage, or Modified

Condition/Decision Coverage (MCDC).

Requirements models have traditionally been less detailed

models of the desired behavior that can be elaborated and

developed into design models by design engineers [4,5]. This

approach relies on the interpretation of the engineer to convert

the natural language requirement into the abstract level design,

which can result in a single point failure if the interpretation is

incorrect. Recently, engineers have begun to develop models

of the requirements that capture only the relationship between

the test and the expected output (or input-output relationship).

More importantly these models are developed independently

from the design models by different engineers using different

modeling styles. The potential single-point interpretation

failure mode is reduced because one group of engineers

develops requirements models from which the tests and

expected outputs are generated and another group develops

design models to which these tests can be applied and the

independent results can be compared as shown in Figure 1.

Several modeling styles are available for capturing the input-

output relationship of a requirement. This paper focuses on

how requirements expressed in a natural language can be

modeled using Cause-Effect graphs coupled with the expected

output, to create a requirements model. The relationship

between the test input and expected output can be captured by

an additional portion of the requirements model that may

contain a simple input-output relationship or abstract models

of the dynamics or logic, so that the input-output relationship

can be computed. The portion of the requirements model

which captures the expected outputs is called the test oracle.

Figure 1: Workflow comparing results of design and

requirements models.

In the paper, we also describe how the Cause-Effect graphs

can be captured in models using Simulink and Stateflow and

then analyzed using Simulink Design Verifier™ to create a set

of test vectors to achieve requirements model coverage

objectives, such as Condition, Decision, and Modified

Condition/Decision (MCDC).

CAUSE-EFFECT GRAPHS

Cause-Effect graphing is a modeling method, introduced in

1979 by Glenford J. Myers in The Art of Software Testing,

through which a natural language specification can be

formally mapped. Cause-Effect graphing maps inputs to

outputs with a set of constraints. In this context, a cause is a

distinct input condition or equivalence class of input

conditions, and an effect is an active condition or applicable

requirement. In a Cause-Effect graph, inputs (causes) and

requirements (effects) are the nodes of the graph. Typically,

the graphs are drawn with causes on the left, effects on the

right, and the logical relationships between them graphed on

lines using the notation shown in Figure 2.

Page 3 of 9

In Figure 2, the Cause-Effect graph provides a diagrammatic

view of the relationship between input (cause) and expected

output (effect) specified by the requirement. The Cause-Effect

graph can be used to derive test cases. For the above example,

test cases are created based on one input condition

(CP_knob_roll within norm) and a second input condition

(AP_sw On) resulting in an effect (AP_setpt = CP_knob_roll).

The advantage of Cause-Effect graphing is that the graphs

enable the tester to formally represent the requirements and

systematically create test cases based on those requirements.

For this paper, we applied Cause-Effect graphing to develop a

set of requirements based tests using the requirements

introduced in [4]. This example has a design model that the

author developed based on the requirements. We will apply

test cases developed using Cause-Effect graphs to the design

model from the original paper to assess the completeness of

the tests on the design. Our goal is to use techniques as

outlined by [2] to gain greater insight on the benefits of using

requirements modeling in a Model-Based Design

environment.

EXAMPLE – AUTOPILOT ROLL

CONTROL

In [3], the author introduced a set of natural language

functional requirements for an aircraft autopilot. In this

example, these requirements are used to illustrate how Cause-

Effect graphs can be applied to manually create a requirements

model and how this model can be used to automatically

generate requirements-based test vectors.

When considering a single requirement, this approach seems

simple to implement. However, the systems that engineers

design today have thousands of requirements, making the task

significantly more complex. As shown in Figure 3, the Cause-

Effect graphing for the requirements document in [3] is much

more complicated than the example shown in Figure 2.

As the number of requirements increases along with their

complexity and the intricacy of the interaction between

requirements, it is easy to see the challenge of creating

sufficient and meaningful test cases to verify that a given

design meets all requirements—especially since each

transition line can represent multiple test cases.

Structured methodologies such as Cause-Effect graphing

provide a basis for systematically developing and tracking test

cases, but the process of manually creating test cases can be

tedious. State charts can be used to address this issue. For

example, the manually created Cause-Effect graph shown in

Figure 3 can be represented by an equivalent flowchart or

stateless state chart using Stateflow. The Cause-Effect

representation shown in this paper adopts the modeling style

developed by John Deere [2]. This particular flowchart

modeling style was developed to work with Simulink Design

Verifier for test case generation.

Figure 2: Cause-Effect Graph of a Requirement

Page 4 of 9

Here are some key characteristics of this modeling style

(extending the example Cause-Effect graph shown in Figure

2):

1. The Cause-Effect graph is split between two different

models, shown in Figure 4. We call the “cause” and

“effect” portion of the model the reference model, and the

“expected output” portion the test oracle.

2. The reference model is further divided into two sections,

shown in Figure 5. The first section parses the input

signals into equivalence classes, and the second section

takes the equivalence class inputs and determines which

of the requirements are being activated. In this example,

one equivalence class is the Cockpit turn knob command

within +/- 30 degree and greater than +/- 3 degrees. Then

the requirement being activated is that “the roll reference

equal Cockpit turn knob value,” which is TRUE when the

equivalence class defined above and AP (Autopilot)

switch ON are both TRUE.

3. Based on the active requirement, the test oracle then

calculates the expected output. In this example, the

expected output of the Autopilot set point is equal to the

Cockpit turn knob command when the corresponding

requirement is TRUE, as shown in Figure 6.

4. Both the reference model and the test oracle use flowchart

syntax to model the cause and effect relationship.

Once the requirement model is completed, it is augmented

with blocks from the Simulink Design Verifier to better

constrain the test vectors.

Figure 3: Cause-Effect Graph of Auto Pilot Example

Page 5 of 9

Figure 4: Structure of Cause-Effect graph

Figure 5: Equivalence Classes and Active Requirements

Figure 6: Expected output calculated by the test oracle

Figure 7: Additional Constraint or "C" Blocks

Page 6 of 9

In Figure 7 the “C” blocks on the signal lines are used to

achieve the following:

1. The “C” block labeled “1” controls the input signal such

that it can only be either True or False.

2. The “C” block labeled “2” controls the input signal such

that it can only be in the range of -40 to +40 degrees.

3. The “C” block labeled “3” enforces that the requirement

associated with that signal (AP_disable_REQ) will always

be True during test generation. Because this output is

always set to True, conflicting requirements will show up

as an “unreachable” path.

Continuing the autopilot example shown above from [3], the

Cause-Effect graph of the autopilot requirements is manually

translated into a model using Stateflow and used as input to

generate test cases using Simulink Design Verifier.

The flowchart reference model of the autopilot requirements

graphed in Figure 3 is shown in Figure 8 and the test oracle is

shown in Figure 9.

Figure 9: Test Oracle

Figure 8: Requirements Model

Page 7 of 9

Once complete, the reference model can be used as input to

Simulink Design Verifier to generate test cases. The type of

test cases can be customized via special property blocks,

which add constraints to the model. The “C” block described

above, and shown in Figure 7, is an example of such a

constraint. For example, a standard set of test cases can be

generated to achieve model coverage objectives of the

requirements model. Additionally, a customized constraint

can be added to the model to provide a specification on a

signal’s initial condition, and the test vectors can be generated

to satisfy this constraint.

A more rigorous approach, as suggested in [2], is to create a

set of MCDC test cases, while holding each of the reference

model outputs (individual requirements) True. This approach

provides two important advantages:

 It draws attention to potential errors. If a requirement (or

objective) on a branch of the requirements model is

unreachable, then this requirement is mutually exclusive

from the others on the branch. A review of such a result

would highlight potential error that may occur while

creating the model.

 It systematically creates more test cases, which can

identify errors that might otherwise have been missed

using a manual test creation process. Since the test oracle

provides the expected output or results, simulation results

from these test cases can be automatically or

programmatically analyzed allowing engineers to focus

on only those test cases where there is a discrepancy

between the two models).). As a result, running

additional test cases, including field recorded data and

random noise tests, will not add significant analysis time.

Once test cases have been created, they are placed inside a test

harness model along with the reference model and test oracle,

as shown in Figure 10. The same test vectors fed into the

requirements model are then fed into the design model and the

outputs are compared.

The output of the test oracle and design model should be

identical. If they are not, then there is a discrepancy between

the requirement and the design. A discrepancy does not imply

that the requirement is not met, but each discrepancy does

need to be investigated. The requirements model might itself

contain errors, just as the design model can, since they are

both built manually. The key point is that the probability of

both independent modelers making the same error with

different modeling approaches at the same point is low.

As a final check, engineers can run the generated test vectors

on the design models and measure the model-level coverage.

Since the test cases were generated from the requirements

model, it can be reasoned that if the requirements model was

100% covered by the test vectors then applying them to the

design model should result in 100% coverage of the design

model. If it does not, then some unintended functionality may

Figure 10: Test Harness Model

Page 8 of 9

have been included in the design. Failing to achieve 100%

coverage may also point to incomplete requirements or

missing derived requirements.

RESULT

By comparing the coverage analysis between the requirement

model and design model in [3], we found the following issues:

1. Missing coverage objective.

Applying the set of automatically generated test cases

from the requirements model to the design model revealed

missing coverage in the design model. Upon further

analysis it was determined that three high level

requirements, listed below, were not detailed enough to

create the requirements model with sufficient content to

match that of the design model.

 Steady state roll commands shall be tracked within 1

degree in calm air.

 Response to roll step commands shall not exceed

10% overshoot in calm air.

 Small signal (<3 degree) roll bandwidth shall be at

least 0.5 rad/sec.

To meet the performance requirements listed above, the

design model must include a closed-loop feedback

algorithm, as shown in Figure 11. The need for the added

structure was identified when the test cases were

generated from the requirements model and several

blocks were not covered (see Figure 11) and three inputs

were missing (see Figure 10). Since the existence of the

closed-loop feedback is not specified in the system-level

requirements, both the feedback signals (inputs) and the

elements of the feedback algorithm were not covered by

the tests generated from the system level requirements

model. The uncovered elements include logic and

saturation blocks circled in Figure 11. When the

additional requirements for the structure of the feedback

are added, the missing inputs are generated using the

approach discussed in this paper.

2. Test oracle and design model output mismatch.

The output of the test oracle and the design model were

different under the following conditions:

 Autopilot switch was engaged from time = 0.

 Set point for autopilot while autopilot is not engaged.

In this case, there is either an implicit assumption about

the behavior at time=0 or some presumption of manual

override. It is important to note that this approach

highlighted the disconnect between the requirements and

the design for these conditions.

CONCLUSIONS

We draw the following conclusions from this work:

 The modeling style used for Cause-Effect graphing is

sufficiently different from those used in design models

that it may provide independence between development

and verification paths. For engineers, the use of this

modeling style keeps the focus on requirements, and not

on design or implementation.

 When generating test cases and holding each of the output

signals to be True, various mutually exclusive

requirements were deemed unreachable. This provides a

systematic way of analyzing each requirement and its

exclusivity with respect to other requirements. For

example, the requirement states that the roll mode of

Autopilot can only be active when no other lateral mode

is active. This is verified when generating test cases

Figure 11: Feedback Algorithm

Note: blocks circled have missing coverage

information

Page 9 of 9

while constraining the roll mode to be True; in this case

the heading mode switch logic path was shown as

unreachable.

 Cause-Effect graphing can be one way to systematically

track each requirement (and its interaction with other

requirements) as one builds a graphical representation or a

model of the requirement.

 Cause-Effect graphing can be time consuming. However,

this initial time investment can be recouped via:

o Avoiding potential rework at later development

stages. Upfront requirements analysis can save

thousands of hours on a typical industrial project [6].

o Automatically generating tests from the requirements

models.

o Automating the review of test results via comparison

with the test oracle.

 The Cause-Effect graphing method (and test generation),

while applicable to system level requirements, may lead

to less than 100% coverage of a design model due to

derived requirements. As a result, the application of

Cause-Effect graphing is sometimes more straightforward

for low level requirements than for system level

requirements. For high level requirements, the output

usually has a greater tolerance, with many of the lower

level requirements left to the interpretation of the

algorithm designer. This in turn makes the coverage

comparison more nuanced and output comparison more

prone to acceptable differences. As a result, some

engineers may focus their use of Cause-Effect graphing

only on low level requirements. The requirement model

may need to be elaborated—like the design model—

throughout the development cycle.

 Cause-Effect graphing is one form of requirements

modeling that can be paired in a straightforward manner

with automatic test generation. An extension of the

requirements model can be also be viewed from the

perspective of test generation. Modeling constructs such

as boundary values, signal initialization, and so on can be

added, making it possible to generate test cases from the

models with tools such as Simulink Design Verifier. This

potential makes reuse of test vectors much easier and

review and modification process much easier as well.

 Lastly, using the test oracle, the review of the test results

with the expected outputs can be automated.

REFERENCES

1. Myers, Glenford J., The Art of Software Testing, 2
nd

Eddition, John Wiley & Sons, Inc., Hoboken, New Jersey,

2004

2. Ross, Jim, 2013 SAE World Congress Technical Track -

AE316, “Requirement-based Test Case Generation and

Coverage Analysis”

3. Potter, Bill, Model-Based Design for DO-178B 2008

MathWorks News Letter,

http://www.mathworks.com/company/newsletters/articles/

model-based-design-for-do-178b.html

4. Barnard, Paul, Graphical Techniques for Aircraft

Dynamic Model Development, 2004 AIAA

5. Yang, J., Bauman, J., and Beydoun, A., "Requirement

Analysis and Development using MATLAB

Models," SAE Int. J. Passeng. Cars - Electron. Electr.

Syst. 2(1):430-437, 2009, doi:10.4271/2009-01-1548.

6. Lin, Joy, Measuring Return on Investment of Model-

Based Design, MathWorks White Paper,

http://www.mathworks.com/model-based-design/mbd-roi-

video/Measuring_ROI_of_MBD.pdf

CONTACT INFORMATION

All contact should be directed to Jon Friedman – email:

jon.friedman@mathworks.com.

http://www.mathworks.com/company/newsletters/articles/model-based-design-for-do-178b.html
http://www.mathworks.com/company/newsletters/articles/model-based-design-for-do-178b.html
http://www.mathworks.com/model-based-design/mbd-roi-video/Measuring_ROI_of_MBD.pdf
http://www.mathworks.com/model-based-design/mbd-roi-video/Measuring_ROI_of_MBD.pdf

