
Page 1 of 6

2020-01-0718

Creating Driving Scenarios from Recorded Vehicle Data for Validating Lane
Centering System in Highway Traffic

Seo-Wook Park, Kunal Patil, Will Wilson and Mark Corless
MathWorks

Gabriel Choi and Paul Adam
General Motors

Copyright 2020 The MathWorks, Inc.

Abstract

The adoption of simulation is critical to reducing development time
and enhancing system robustness for Advanced Driver Assistance
Systems (ADAS). Automotive companies typically have an
abundance of real data recorded from a vehicle which is suitable for
open-loop simulations. However, recorded data is often not suitable
to test closed-loop control systems since the recorded data cannot
react to changes in vehicle movement. This paper introduces a
methodology to create virtual driving scenarios from recorded vehicle
data to enable closed-loop simulation. This methodology is applied to
test a lane centering application. A lane centering application helps a
driver control steering to stay in the current lane and control
acceleration and braking to maintain a set speed or to follow a
preceding vehicle. The driver’s vehicle is referred to as the ego
vehicle. Other vehicles on the road are referred to as target vehicles.
To test the lane centering system in simulation, engineers must model
the ego vehicle (sensors and dynamics) as well as the scenario (roads
and target vehicles). A virtual driving scenario is created by
reconstructing roads and target vehicles using GPS, camera-based
lane detections, radar-based vehicle detections, and map data. The
virtual driving scenario is integrated into a closed-loop simulation to
assess the behavior of a lane centering system.

Introduction

A lane centering system requires longitudinal and lateral control to
guarantee appropriate lane-following behavior while maintaining a
safety distance from the leading vehicle [1]. The driving automation
system executes controls for steering, acceleration and brake.
However, for this level of automation (L2 or L3), human driver is
still required to supervise the system and ready to take over the
control in case the system is malfunctioning [2]. Considering the
complexity of driving automation system and intrinsic uncertainty of
operational environments, its performance needs to be thoroughly
tested against standard requirements (e.g. ISO 15622/22178) and
real-world driving scenarios.

The vehicle equipped with the driving automation system would have
to be driven tens of thousands of miles to evaluate the performance
and reliability. The adoption of a virtual simulation tool is key to
reducing development time and enhancing system robustness [3,4].

F. Martinelli proposed a methodology for design and verification of a
traffic jam assist system via simulation using MATLAB and

Simulink [5]. Virtual driving scenarios representing typical real-
world driving situations were used to verify appropriate behavior of
the control system and evaluate its performance. One of main
concerns of their approach is how well the virtual driving scenarios
can represent the real-world traffic situation in terms of accuracy of
road network and vehicle motions.

In this paper, we introduce a methodology to create driving scenarios
from recorded vehicle data such as GPS, vehicle speed, on-board
radar and camera sensors. When test engineers observe unwanted
system behavior from the real traffic, they want to identify the root
causes by reproducing the driving scenario with simulation.

The methodology to create a virtual driving scenario consists of the
following steps:

1. Record and select data
2. Reconstruct road network
3. Localize ego trajectory
4. Reconstruct target vehicles
5. Compare with recorded video

The virtual driving scenario can then be used to test an ADAS system
using simulation. This paper demonstrates applying this methodology
to test a lane centering application.

Record and select data

To enable reproducing a real-world traffic situation with a virtual
driving scenario in order to test the lane centering system, our test
engineer drove on highways and collected data over the CAN bus.
Data collected from the CAN bus included:

• Global Positioning System (GPS)
• Vehicle speed
• Object detections from radar sensor
• Lane marking detections from camera sensor

In addition to the CAN data, the test engineer logged video to an
MP4 file using a separate camera. This recording would be used at
the verification stage for visual comparison against the open-loop
virtual driving scenario.

We read the CAN messages and MP4 data into MATLAB and
visualized the results. We then identified scenarios with near

Page 2 of 6

collisions that would be interesting to reproduce in closed loop
simulation.

Reconstruct road network

We identified the general area where the data was collected based on
the recorded GPS data. To create a road model, we needed to
correlate the recorded GPS location data to a map data. Today, many
digital map databases (e.g., Google Map, OpenStreetMap, HERE
Map, etc.) are available to create the driving scenario using road
attributes extracted from the map data [6]. Yang Zheng and Michael
Zilske used OpenStreetMap to generate the virtual traffic scenarios
[6,7].

We used a high-definition (HD) map as the source of road network
information because it has extremely high resolution at centimeter-
level. The precise geometry of the HD map makes it suitable for
automated driving workflows.

The HD map data is composed of tiled mapping layers that provide
access to accurate geometry and robust attributes of a road network.
The layers are grouped into the following models:

• Road Centerline Model: Provides road topology (specified as
nodes and links in a graph), shape geometry, and other road-
level attributes.

• HD Lane Model: Provides lane topology (as lane groups and
lane group connectors), highly accurate geometry, and lane-level
attributes.

• HD Localization Model: Provides features to support vehicle
localization strategies.

We began by plotting the recorded GPS sequence on the HD map as
shown in Figure 1. This allowed us to identify the section of road
corresponding to the test drive.

Figure 1. HD Map and driving route with recorded GPS data

We then extracted road center coordinates and lane information from
the Road Centerline and HD Lane Models. We used this information
to programmatically create a model of the road network as shown in
Figure 2. We used the driving scenario object from Automated
Driving Toolbox [8] to create the model the road network.

Figure 2. Road network constructed from HD Map

The road network imported from the HD map contained more road
network information than required to reproduce the test route. To
simplify the network, we removed unnecessary roads elements such
as bridges and cross roads. The edited road network is shown in
Figure 3.

Figure 3. Edited road network

Localize ego trajectory

Once the road network was reconstructed, we needed to add the
surrounding detected objects to the scenario. Since the recorded data
was from a highway drive, the only detected objects we needed to
represent were target vehicles. The target vehicle detections are based
on recorded detections from the radar. These detections are measured
with respect to the ego vehicle. To construct equivalent target
vehicles in the virtual driving scenario, we needed to transform the
detections from ego coordinates to world coordinates. This transform
depends on accurate position information for the ego vehicle.

To assess how suitable the recorded GPS data was to represent the
ego trajectory, we plotted GPS data atop the constructed road
network as shown in Figure 4.

Page 3 of 6

Figure 4. Ego vehicle trajectory on road network (top: scenario top view,
bottom: ego-centric projective perspective view)

We noticed that the plotted position deviated further from the lane
center than we expected. To explore this further, we compared the
ego lateral deviations from lane center by the GPS based trajectory
and camera lane sensor as shown in Figure 5. From this we assessed
that the GPS based trajectory was not accurate enough for us to base
our target vehicle transforms.

Figure 5. Lateral deviation of ego vehicle from lane center

We improved the lateral position accuracy of the GPS based
trajectory by localizing it against the lane sensor data. The improved
localized trajectory is show in Figure 6.

Figure 6. Localized trajectory by lane sensor data

We determined that the trajectory localized by the lane sensor was
suitable for use in the coordinate transforms to reconstruct the target
vehicle trajectories.

Reconstruct target vehicles

The radar detections provide the position and velocities of the
surrounding target vehicles with respect to the ego vehicle. We
transformed the target vehicle positions to the world coordinate and
estimated the orientation angle based on vehicle motion using the
following equations 1 and 2. Figure 7 shows the relationships
between the variables used in these equations.

(𝑋𝑋𝑡𝑡 ,𝑌𝑌𝑡𝑡) = �𝑋𝑋𝑒𝑒𝑒𝑒𝑒𝑒,𝑌𝑌𝑒𝑒𝑒𝑒𝑒𝑒� + ℝ�𝛹𝛹𝑒𝑒𝑒𝑒𝑒𝑒� ⋅ (𝑥𝑥𝑡𝑡,𝑦𝑦𝑡𝑡)𝑇𝑇 (1)

where ℝ: rotation matrix, (𝑥𝑥,𝑦𝑦): position in ego coordinate,
(𝑋𝑋,𝑌𝑌): position in world coordinate

𝛹𝛹𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = tan−1 �𝑌𝑌𝑡𝑡−𝑌𝑌𝑡𝑡−1
𝑋𝑋𝑡𝑡−𝑋𝑋𝑡𝑡−1

� (2)

Page 4 of 6

Figure 7. Estimation for orientation angle of target vehicle

We explored the target vehicle trajectories and noticed that after the
coordinate transforms, some of the yaw angles were noisy. We
smoothed the estimated trajectory using Savitzky-Golay filter [9].
The original and smoothed trajectories are shown in Figure 8.

Figure 8. Estimated yaw angle trajectory

Once we determined the trajectories for the target vehicles were
reasonable, we used the driving scenario in Automated Driving
Toolbox to add vehicle actors based on the trajectories calculated in
world coordinates.

Compare with recorded video

To verify the virtual driving scenario, we ran the scenario in open-
loop and visually compared to the corresponding video we recorded
from the vehicle. We looked at road width, road markings, location of
the ego vehicle, and location of surrounding vehicle as shown in
Figure 9. Note that only vehicles detected by the radar were
reconstructed. Vehicles that were not detected by the radar were not

reconstructed. For example, in Figure 9, the vehicle in the first lane
from the left of the video was not detected by the radar, so it is not
included in the virtual scenario.

Figure 9. Recorded video (top) vs. reconstructed driving scenario (bottom)

Simulate closed-loop scenario

Once we gained confidence that the virtual scenario behaved as
expected in open-loop, we integrated it with a lane centering control
algorithm for closed-loop simulation. We used the same Simulink
model described in [5]. The key components of the algorithm are
shown in Figure 10.

Sensor
Fusion and

TrackingVision

Estimate
Lane Center

Preview
Curvature

Find
Lead Car

Model
Predictive

Control

Ego Vehicle
Dynamics

Driving
Scenario

Vision Detection
Generator

Radar Detection
Generator

Lane

Radar
Accel

Steering

Lane Centering System

Speed Ego
pose

Figure 10. Schematic of closed-loop model for lane centering system

The lane centering system consists of components for:

Page 5 of 6

• Sensor fusion and tracking: Fuses object detections from radar
and camera sensors to track other vehicles on the road

• Find lead car: Decides if one of the fused detections represents
a lead vehicle in the same lane as the ego.

• Estimate lane center: Estimates lane center based on detections
from the camera sensor and current state of the ego vehicle.

• Preview curvature: Estimates lane centers for a time horizon
into the future.

• Model predictive control: Performs lateral and longitudinal
control.

Testing the lane centering system in simulation requires additional
components for:

• Vision detection generator: Models object detections and lane

detection generated by a camera-based sensing system.
• Radar detection generator: Models object detections generated

by a radar-based sensing system.
• Ego vehicle dynamics: Models dynamics of the vehicle under

test. Reacts to commanded acceleration and steering. Generates
pose information (position and speed).

• Driving scenario: This is the virtual driving scenario
constructed from recorded data. Models the road and other
vehicles on the road with respect to the ego pose. Provides
ground truth information used by the sensor models.

We ran the simulation and visualized the results at run time as shown
in Figure 11. Overall the results demonstrated that the ego vehicle
showed appropriate lane-following behavior while maintaining a
safety distance from the leading vehicle.

Figure 11. Closed-loop simulation using reconstructed virtual driving scenario

The simulation also provided us insight into areas where the
algorithm under test could be improved or encountered edge
conditions. For one reconstructed scenario we noticed that the
distance from the leading vehicle dropped below the pre-defined
safety three times as shown in Figure 12. This log shows three
interesting cases labeled a, b, and c.

Case (a) shows the transient behavior before the controller is fully
stabilized. This is likely due to the high initial speed with high set-
velocity (98.6 kph).

Case (b) was caused by a cut-in vehicle at low speed. This can be
seen in the from the logged video image in Figure 13. the slow-

moving vehicle from right lane cuts in the ego vehicle, the ego
vehicle reduces longitudinal speed as the headway distance drops
below the safety distance.

Case (c) was caused by a vehicle from the left lane suddenly cutting
in front of the ego vehicle with very close distance. This can be seen
in the from the video recording in Figure 14.

Having a closed loop simulation which reproduces these edge
conditions allows us to explore design alternatives which can
improve overall performance.

Figure 12. Simulation result (top: longitudinal control performance,
bottom: lateral control performance)

0 10 20 30 40 50 60

time (sec)

-0.5

0

0.5

la
te

ra
l d

ev
ia

tio
n

(m
)

Lateral deviation

lateral deviation

0 10 20 30 40 50 60

time (sec)

-0.2

-0.1

0

0.1

re
la

tiv
e

ya
w

 a
ng

le
 (r

ad
)

Relative yaw angle

relative yaw angle

0 10 20 30 40 50 60

time (sec)

-0.2

-0.1

0

0.1

0.2

st
ee

rin
g

an
gl

e
(ra

d)

Steering angle

steering angle

Page 6 of 6

Figure 13. Driving case (b): cut-in vehicle at low speed

Figure 14. Driving case (c): cut-in vehicle with too close distance

Conclusion

We presented a methodology to create virtual driving scenarios from
recorded vehicle GPS, vehicle speed, on-board radar and camera
sensors, and HD map. With this approach, real-world driving
scenarios were successfully reproduced in a closed-loop simulation
environment.

Although we demonstrated this methodology used specific sensors
and map information, the methodology can be scaled to different
sensors and map providers. For example, we used radar detections
due to the configuration of our test vehicle, but the same
methodology could be used with lidar data. Similarly, instead of HD

map, road network information could be imported from other map
databases like OpenStreetMap.

With this approach, a real-world driving scenario can be reproduced
in a virtual simulation environment. This enables engineer to assess
functional behavior and gain insight while reducing time spent in the
vehicle especially when the test cases have any hazardous scenarios.

References

1. National Highway Traffic Safety Administration, "Functional
Safety Assessment of an Automated Lane Centering System,"
DOT HS 812 573, Aug. 2018

2. SAE J 3016-2018, Taxonomy And Definitions For Terms
Related To Driving Automation Systems For On-Road Motor
Vehicles, 2018-06

3. Marc René Zofka, et al, "Testing and Validating High Level
Components for Automated Driving: Simulation Framework for
Traffic Scenarios," IEEE Intelligent Vehicles Symposium, 2016

4. Till Menzel, et al., "Scenarios for Development, Test and
Validation of Automated Vehicles," IEEE Intelligent Vehicles
Symposium, 2018

5. F. Martinelli, F. Stevenin, S.-W. Park, M. Corless, "Design and
Verification of a Traffic Jam Assist System," SIA Simulation
Numérique, April 3-4, 2019, St-Quentin-en-Yvelines, France

6. Yang Zheng, et al., "Exploring OpenStreetMap Availability for
Driving Environment Understanding," IEEE Intelligent Vehicles
Symposium, 2018

7. Michael Zilske, et al., "OpenStreetMap for traffic simulation,"
Proceedings of the 1st European state of the map :
OpenStreetMap conference, 2011

8. Automated Driving Toolbox
(https://www.mathworks.com/products/automated-driving.html)

9. Orfanidis, Sophocles J. Introduction to Signal Processing.
Englewood Cliffs, NJ: Prentice-Hall, 1996.

© 2020 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See www.mathworks.com/trademarks for a list
of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.

https://www.mathworks.com/products/automated-driving.html

