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Abstract 

The adoption of simulation is critical to reducing development time 
and enhancing system robustness for Advanced Driver Assistance 
Systems (ADAS). Automotive companies typically have an 
abundance of real data recorded from a vehicle which is suitable for 
open-loop simulations. However, recorded data is often not suitable 
to test closed-loop control systems since the recorded data cannot 
react to changes in vehicle movement. This paper introduces a 
methodology to create virtual driving scenarios from recorded vehicle 
data to enable closed-loop simulation. This methodology is applied to 
test a lane centering application. A lane centering application helps a 
driver control steering to stay in the current lane and control 
acceleration and braking to maintain a set speed or to follow a 
preceding vehicle. The driver’s vehicle is referred to as the ego 
vehicle. Other vehicles on the road are referred to as target vehicles. 
To test the lane centering system in simulation, engineers must model 
the ego vehicle (sensors and dynamics) as well as the scenario (roads 
and target vehicles). A virtual driving scenario is created by 
reconstructing roads and target vehicles using GPS, camera-based 
lane detections, radar-based vehicle detections, and map data. The 
virtual driving scenario is integrated into a closed-loop simulation to 
assess the behavior of a lane centering system. 

Introduction 

A lane centering system requires longitudinal and lateral control to 
guarantee appropriate lane-following behavior while maintaining a 
safety distance from the leading vehicle [1]. The driving automation 
system executes controls for steering, acceleration and brake. 
However, for this level of automation (L2 or L3), human driver is 
still required to supervise the system and ready to take over the 
control in case the system is malfunctioning [2]. Considering the 
complexity of driving automation system and intrinsic uncertainty of 
operational environments, its performance needs to be thoroughly 
tested against standard requirements (e.g. ISO 15622/22178) and 
real-world driving scenarios. 

The vehicle equipped with the driving automation system would have 
to be driven tens of thousands of miles to evaluate the performance 
and reliability. The adoption of a virtual simulation tool is key to 
reducing development time and enhancing system robustness [3,4].  

 

F. Martinelli proposed a methodology for design and verification of a 
traffic jam assist system via simulation using MATLAB and 

Simulink [5]. Virtual driving scenarios representing typical real-
world driving situations were used to verify appropriate behavior of 
the control system and evaluate its performance. One of main 
concerns of their approach is how well the virtual driving scenarios 
can represent the real-world traffic situation in terms of accuracy of 
road network and vehicle motions. 

In this paper, we introduce a methodology to create driving scenarios 
from recorded vehicle data such as GPS, vehicle speed, on-board 
radar and camera sensors. When test engineers observe unwanted 
system behavior from the real traffic, they want to identify the root 
causes by reproducing the driving scenario with simulation.  

The methodology to create a virtual driving scenario consists of the 
following steps: 

1. Record and select data 
2. Reconstruct road network 
3. Localize ego trajectory 
4. Reconstruct target vehicles 
5. Compare with recorded video 

The virtual driving scenario can then be used to test an ADAS system 
using simulation. This paper demonstrates applying this methodology 
to test a lane centering application. 

Record and select data 

To enable reproducing a real-world traffic situation with a virtual 
driving scenario in order to test the lane centering system, our test 
engineer drove on highways and collected data over the CAN bus. 
Data collected from the CAN bus included: 

• Global Positioning System (GPS) 
• Vehicle speed 
• Object detections from radar sensor 
• Lane marking detections from camera sensor 

In addition to the CAN data, the test engineer logged video to an 
MP4 file using a separate camera. This recording would be used at 
the verification stage for visual comparison against the open-loop 
virtual driving scenario. 

We read the CAN messages and MP4 data into MATLAB and 
visualized the results. We then identified scenarios with near 
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collisions that would be interesting to reproduce in closed loop 
simulation. 

Reconstruct road network 

We identified the general area where the data was collected based on 
the recorded GPS data. To create a road model, we needed to 
correlate the recorded GPS location data to a map data. Today, many 
digital map databases (e.g., Google Map, OpenStreetMap, HERE 
Map, etc.) are available to create the driving scenario using road 
attributes extracted from the map data [6]. Yang Zheng and Michael 
Zilske used OpenStreetMap to generate the virtual traffic scenarios 
[6,7]. 

We used a high-definition (HD) map as the source of road network 
information because it has extremely high resolution at centimeter-
level. The precise geometry of the HD map makes it suitable for 
automated driving workflows.  

The HD map data is composed of tiled mapping layers that provide 
access to accurate geometry and robust attributes of a road network. 
The layers are grouped into the following models: 

• Road Centerline Model: Provides road topology (specified as 
nodes and links in a graph), shape geometry, and other road-
level attributes. 

• HD Lane Model: Provides lane topology (as lane groups and 
lane group connectors), highly accurate geometry, and lane-level 
attributes. 

• HD Localization Model: Provides features to support vehicle 
localization strategies. 

We began by plotting the recorded GPS sequence on the HD map as 
shown in Figure 1. This allowed us to identify the section of road 
corresponding to the test drive.  

 
 
Figure 1. HD Map and driving route with recorded GPS data 

We then extracted road center coordinates and lane information from 
the Road Centerline and HD Lane Models. We used this information 
to programmatically create a model of the road network as shown in 
Figure 2. We used the driving scenario object from Automated 
Driving Toolbox [8] to create the model the road network.  

 
 
Figure 2. Road network constructed from HD Map 

 
The road network imported from the HD map contained more road 
network information than required to reproduce the test route. To 
simplify the network, we removed unnecessary roads elements such 
as bridges and cross roads. The edited road network is shown in 
Figure 3. 

 

 
 
Figure 3. Edited road network 

 

Localize ego trajectory 

Once the road network was reconstructed, we needed to add the 
surrounding detected objects to the scenario. Since the recorded data 
was from a highway drive, the only detected objects we needed to 
represent were target vehicles. The target vehicle detections are based 
on recorded detections from the radar. These detections are measured 
with respect to the ego vehicle. To construct equivalent target 
vehicles in the virtual driving scenario, we needed to transform the 
detections from ego coordinates to world coordinates. This transform 
depends on accurate position information for the ego vehicle. 

To assess how suitable the recorded GPS data was to represent the 
ego trajectory, we plotted GPS data atop the constructed road 
network as shown in Figure 4.  
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Figure 4. Ego vehicle trajectory on road network (top: scenario top view, 
bottom: ego-centric projective perspective view) 

 
 
We noticed that the plotted position deviated further from the lane 
center than we expected. To explore this further, we compared the 
ego lateral deviations from lane center by the GPS based trajectory 
and camera lane sensor as shown in Figure 5. From this we assessed 
that the GPS based trajectory was not accurate enough for us to base 
our target vehicle transforms. 

 

 
 
Figure 5. Lateral deviation of ego vehicle from lane center  

We improved the lateral position accuracy of the GPS based 
trajectory by localizing it against the lane sensor data. The improved 
localized trajectory is show in Figure 6. 

 

 
 
 
Figure 6. Localized trajectory by lane sensor data 

 
We determined that the trajectory localized by the lane sensor was 
suitable for use in the coordinate transforms to reconstruct the target 
vehicle trajectories. 

 
Reconstruct target vehicles 

The radar detections provide the position and velocities of the 
surrounding target vehicles with respect to the ego vehicle. We 
transformed the target vehicle positions to the world coordinate and 
estimated the orientation angle based on vehicle motion using the 
following equations 1 and 2. Figure 7 shows the relationships 
between the variables used in these equations. 

(𝑋𝑋𝑡𝑡 ,𝑌𝑌𝑡𝑡) = �𝑋𝑋𝑒𝑒𝑒𝑒𝑒𝑒,𝑌𝑌𝑒𝑒𝑒𝑒𝑒𝑒� + ℝ�𝛹𝛹𝑒𝑒𝑒𝑒𝑒𝑒� ⋅ (𝑥𝑥𝑡𝑡,𝑦𝑦𝑡𝑡)𝑇𝑇 (1) 

where ℝ: rotation matrix, (𝑥𝑥,𝑦𝑦): position in ego coordinate, 
(𝑋𝑋,𝑌𝑌): position in world coordinate 

𝛹𝛹𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = tan−1 �𝑌𝑌𝑡𝑡−𝑌𝑌𝑡𝑡−1
𝑋𝑋𝑡𝑡−𝑋𝑋𝑡𝑡−1

� (2) 
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Figure 7. Estimation for orientation angle of target vehicle 
 

We explored the target vehicle trajectories and noticed that after the 
coordinate transforms, some of the yaw angles were noisy. We 
smoothed the estimated trajectory using Savitzky-Golay filter [9]. 
The original and smoothed trajectories are shown in Figure 8. 

 
 
Figure 8. Estimated yaw angle trajectory  

Once we determined the trajectories for the target vehicles were 
reasonable, we used the driving scenario in Automated Driving 
Toolbox to add vehicle actors based on the trajectories calculated in 
world coordinates. 

Compare with recorded video 

To verify the virtual driving scenario, we ran the scenario in open-
loop and visually compared to the corresponding video we recorded 
from the vehicle. We looked at road width, road markings, location of 
the ego vehicle, and location of surrounding vehicle as shown in 
Figure 9. Note that only vehicles detected by the radar were 
reconstructed. Vehicles that were not detected by the radar were not 

reconstructed. For example, in Figure 9, the vehicle in the first lane 
from the left of the video was not detected by the radar, so it is not 
included in the virtual scenario. 

 
 

 
 
Figure 9. Recorded video (top) vs. reconstructed driving scenario (bottom) 

 

Simulate closed-loop scenario 

Once we gained confidence that the virtual scenario behaved as 
expected in open-loop, we integrated it with a lane centering control 
algorithm for closed-loop simulation. We used the same Simulink 
model described in [5].  The key components of the algorithm are 
shown in Figure 10.  
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Figure 10. Schematic of closed-loop model for lane centering system 

 
The lane centering system consists of components for: 
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• Sensor fusion and tracking: Fuses object detections from radar 
and camera sensors to track other vehicles on the road 

• Find lead car: Decides if one of the fused detections represents 
a lead vehicle in the same lane as the ego. 

• Estimate lane center: Estimates lane center based on detections 
from the camera sensor and current state of the ego vehicle. 

• Preview curvature: Estimates lane centers for a time horizon 
into the future. 

• Model predictive control: Performs lateral and longitudinal 
control. 

 
Testing the lane centering system in simulation requires additional 
components for: 
  
• Vision detection generator: Models object detections and lane 

detection generated by a camera-based sensing system. 
• Radar detection generator: Models object detections generated 

by a radar-based sensing system. 
• Ego vehicle dynamics:  Models dynamics of the vehicle under 

test. Reacts to commanded acceleration and steering. Generates 
pose information (position and speed). 

• Driving scenario: This is the virtual driving scenario 
constructed from recorded data. Models the road and other 
vehicles on the road with respect to the ego pose. Provides 
ground truth information used by the sensor models.  

 

We ran the simulation and visualized the results at run time as shown 
in Figure 11. Overall the results demonstrated that the ego vehicle 
showed appropriate lane-following behavior while maintaining a 
safety distance from the leading vehicle. 

 

 
 
Figure 11. Closed-loop simulation using reconstructed virtual driving scenario 

 
The simulation also provided us insight into areas where the 
algorithm under test could be improved or encountered edge 
conditions. For one reconstructed scenario we noticed that the 
distance from the leading vehicle dropped below the pre-defined 
safety three times as shown in Figure 12. This log shows three 
interesting cases labeled a, b, and c.  

Case (a) shows the transient behavior before the controller is fully 
stabilized. This is likely due to the high initial speed with high set-
velocity (98.6 kph).  

Case (b) was caused by a cut-in vehicle at low speed. This can be 
seen in the from the logged video image in Figure 13. the slow-

moving vehicle from right lane cuts in the ego vehicle, the ego 
vehicle reduces longitudinal speed as the headway distance drops 
below the safety distance.  

Case (c) was caused by a vehicle from the left lane suddenly cutting 
in front of the ego vehicle with very close distance. This can be seen 
in the from the video recording in Figure 14. 

Having a closed loop simulation which reproduces these edge 
conditions allows us to explore design alternatives which can 
improve overall performance. 

 
 

 
Figure 12. Simulation result (top: longitudinal control performance,       
bottom: lateral control performance) 
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Figure 13. Driving case (b): cut-in vehicle at low speed 

Figure 14. Driving case (c): cut-in vehicle with too close distance 

Conclusion 

We presented a methodology to create virtual driving scenarios from 
recorded vehicle GPS, vehicle speed, on-board radar and camera 
sensors, and HD map. With this approach, real-world driving 
scenarios were successfully reproduced in a closed-loop simulation 
environment.  

Although we demonstrated this methodology used specific sensors 
and map information, the methodology can be scaled to different 
sensors and map providers. For example, we used radar detections 
due to the configuration of our test vehicle, but the same 
methodology could be used with lidar data. Similarly, instead of HD 

map, road network information could be imported from other map 
databases like OpenStreetMap. 

With this approach, a real-world driving scenario can be reproduced 
in a virtual simulation environment. This enables engineer to assess 
functional behavior and gain insight while reducing time spent in the 
vehicle especially when the test cases have any hazardous scenarios. 
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