Reinforcement Learning Workflows for AI | MATLAB Oil and Gas Conference 2019
From the series: MATLAB Oil and Gas Conference 2019
Reinforcement learning allows you to solve control problems using deep learning without using labeled data. Instead, it uses a model of your system that captures the appropriate dynamics of the environment and learns through performing multiple simulations. This simulation data is used to train a policy which is often represented by a deep neural network that would then replace your traditional controller or decision-making system.
In this talk, you will learn how to use Reinforcement Learning Toolbox™ and other MathWorks products to set up your environment models, define the policy and its various hyperparameters, and scale training through parallel computing to improve performance.
Related Products
Learn More
Featured Product
Reinforcement Learning Toolbox
Up Next:
Related Videos:
Website auswählen
Wählen Sie eine Website aus, um übersetzte Inhalte (sofern verfügbar) sowie lokale Veranstaltungen und Angebote anzuzeigen. Auf der Grundlage Ihres Standorts empfehlen wir Ihnen die folgende Auswahl: .
Sie können auch eine Website aus der folgenden Liste auswählen:
So erhalten Sie die bestmögliche Leistung auf der Website
Wählen Sie für die bestmögliche Website-Leistung die Website für China (auf Chinesisch oder Englisch). Andere landesspezifische Websites von MathWorks sind für Besuche von Ihrem Standort aus nicht optimiert.
Amerika
- América Latina (Español)
- Canada (English)
- United States (English)
Europa
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)
Asien-Pazifik
- Australia (English)
- India (English)
- New Zealand (English)
- 中国
- 日本Japanese (日本語)
- 한국Korean (한국어)