Skip to content
MathWorks - Mobile View
  • Melden Sie sich bei Ihrem MathWorks Konto anMelden Sie sich bei Ihrem MathWorks Konto an
  • Access your MathWorks Account
    • Eigener Account
    • Mein Community Profil
    • Lizenz zuordnen
    • Abmelden
  • Produkte
  • Lösungen
  • Forschung und Lehre
  • Support
  • Community
  • Veranstaltungen
  • MATLAB erhalten
MathWorks
  • Produkte
  • Lösungen
  • Forschung und Lehre
  • Support
  • Community
  • Veranstaltungen
  • MATLAB erhalten
  • Melden Sie sich bei Ihrem MathWorks Konto anMelden Sie sich bei Ihrem MathWorks Konto an
  • Access your MathWorks Account
    • Eigener Account
    • Mein Community Profil
    • Lizenz zuordnen
    • Abmelden

Videos und Webinare

  • MathWorks
  • Videos
  • Videos Homepage
  • Suche
  • Videos Homepage
  • Suche
  • Vertrieb kontaktieren
  • Testsoftware
25:43 Video length is 25:43.
  • Description
  • Related Resources

MATLAB Oil and Gas Conference 2019: Seismic Analysis with Wavelets and Deep Learning

From the series: MATLAB Oil and Gas Conference 2019

Seismic reflection analysis is the most common method to obtain subsurface information for reservoir characterization. However, seismic reflection is often distorted by complex salt bodies and other geological structures and its vertical resolution is often of the order of dozens of meters. In addition, analyzing large amounts of seismic data is a computationally challenging and time-consuming task. To circumvent these challenges, in this work, we present an approach using wavelets and deep learning to accelerate seismic analysis tasks.

While considerable attention has already been focused on the use of wavelet transforms for seismic data compression, we combine it with deep learning to address the problem of distortion of seismic data. The field studies were done on seismic data from Antarctica, and we could clearly identify the interfaces between ice sheet and bed rock. Our recent results have demonstrated that wavelets combined with deep learning can distinguish among different facies, helping the interpreter to process new seismic images. The great advantage of this method over using just deep learning is the reduction in the amount of labeled data needed for training. We also present very quick-to-prototype algorithms in MATLAB® that can classify parts of the image with high accuracy. The final part of this work includes deploying this deep learning network on a GPU to perform the facies recognition real time on a stand-alone embedded hardware.

Related Products

  • Wavelet Toolbox
  • Deep Learning Toolbox
  • Signal Processing Toolbox

Learn More

MATLAB for Deep Learning

3 Ways to Speed Up Model Predictive Controllers

Read white paper

A Practical Guide to Deep Learning: From Data to Deployment

Read ebook

Bridging Wireless Communications Design and Testing with MATLAB

Read white paper

Deep Learning and Traditional Machine Learning: Choosing the Right Approach

Read ebook

Hardware-in-the-Loop Testing for Power Electronics Control Design

Read white paper

Predictive Maintenance with MATLAB

Read ebook

Electric Vehicle Modeling and Simulation - Architecture to Deployment : Webinar Series

Register for Free

How much do you know about power conversion control?

Start quiz
Related Information
Related Information
MATLAB for the Oil and Gas Industry

Feedback

Featured Product

Wavelet Toolbox

  • Request Trial
  • Get Pricing

Up Next:

Gustavo Sanchez from Pandata Tech addresses some common misconceptions about MATLAB vs. open source.
24:14
MATLAB and Open Source
View full series (7 Videos)

Related Videos:

4:27
Peak Analysis
42:45
Signal Processing and Machine Learning Techniques for...
39:18
Signal Processing for Machine Learning
27:15
MATLAB Analysis of Prestack Seismic: Using MATLAB Beyond...
8:51
MATLAB Analysis of Prestack Seismic: Using MATLAB Beyond...

View more related videos

MathWorks - Domain Selector

Select a Web Site

Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: .

  • Switzerland (English)
  • Switzerland (Deutsch)
  • Switzerland (Français)
  • 中国 (简体中文)
  • 中国 (English)

You can also select a web site from the following list:

How to Get Best Site Performance

Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.

Americas

  • América Latina (Español)
  • Canada (English)
  • United States (English)

Europe

  • Belgium (English)
  • Denmark (English)
  • Deutschland (Deutsch)
  • España (Español)
  • Finland (English)
  • France (Français)
  • Ireland (English)
  • Italia (Italiano)
  • Luxembourg (English)
  • Netherlands (English)
  • Norway (English)
  • Österreich (Deutsch)
  • Portugal (English)
  • Sweden (English)
  • Switzerland
    • Deutsch
    • English
    • Français
  • United Kingdom (English)

Asia Pacific

  • Australia (English)
  • India (English)
  • New Zealand (English)
  • 中国
    • 简体中文Chinese
    • English
  • 日本Japanese (日本語)
  • 한국Korean (한국어)

Contact your local office

  • Vertrieb kontaktieren
  • Testsoftware

MathWorks

Accelerating the pace of engineering and science

MathWorks ist der führende Entwickler von Software für mathematische Berechnungen für Ingenieure und Wissenschaftler.

Entdecken Sie…

Produkte

  • MATLAB
  • Simulink
  • Software für Studierende
  • Hardware-Unterstützung
  • File Exchange

Testen oder Kaufen

  • Downloads
  • Testsoftware
  • Vertrieb kontaktieren
  • Preise und Lizenzierung
  • Store

Lernen

  • Dokumentation
  • Tutorials
  • Beispiele
  • Videos und Webinare
  • Schulungen

Support

  • Hilfe zur Installation
  • MATLAB Answers
  • Consulting
  • License Center
  • Support kontaktieren

Über MathWorks

  • Jobs & Karriere
  • Newsroom
  • Soziales Engagement
  • Berichte von Anwendern
  • Über MathWorks
  • Select a Web Site United States
  • Trust Center
  • Handelsmarken
  • Datenschutz
  • Datendiebstahl verhindern
  • Status von Anwendungen

© 1994-2022 The MathWorks, Inc.

  • Facebook
  • Twitter
  • Instagram
  • YouTube
  • LinkedIn
  • RSS

Folgen Sie uns