Find the value of interpolation polynomial
6 views (last 30 days)
Show older comments
On the interval [−2,2] I have the given function f (x) = (8 *a^3) / (x^2 + 4*a^2), where is parameter a = 1 / 2.80. I would like to approximate the function by interpolation polynomial. Use the polyfit command to find the interpolation polynomial written in standard base interpolating f in x = −2,0,2. What is the value of interpolation polynomial in x = 1?
Is this alright or I have to change something?
format long
a = 1./2.80;
f = @(x) (8.*a.^3)./(x.^2+4.*a.^2);
p = polyfit(-2:2,f(-2:2),2)
0 Comments
Answers (1)
Voss
on 15 May 2022
"interpolating f in x = −2,0,2"
To me that sounds like you should use f(x) at x = -2, 0, and 2, rather than x = -2:2, which is x = -2, -1, 0, 1, and 2.
format long
a = 1./2.80;
f = @(x) (8.*a.^3)./(x.^2+4.*a.^2);
p = polyfit([-2 0 2],f([-2 0 2]),2)
And don't forget about "What is the value of interpolation polynomial in x = 1?"
polyval(p,1)
% visual aid:
% rational function f:
plot(-2:0.01:2,f(-2:0.01:2))
hold on
% polynomial fit from x = [-2 0 2]:
plot(-2:0.01:2,polyval(p,-2:0.01:2),'--r')
% also plot the polynomial fit from x = [-2 -1 0 1 2], for reference:
p_old = polyfit(-2:2,f(-2:2),2);
plot(-2:0.01:2,polyval(p_old,-2:0.01:2),':m')
0 Comments
See Also
Categories
Find more on Polynomials in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!