Conversion of linear equations to form Ax=b
2 views (last 30 days)
Show older comments
Hello everyone,
I have the following equations:
syms t u v w x y z
intersection_a = -t + w + x == 100;
intersection_b = t - u == 100;
intersection_c = v + w - y - z == 0;
intersection_d = u + v == 40;
I can convert it to form of Ax=b using equationsToMatrix(). But my question is if I have t = 100 and w+x+y = 100, then does the equation change? Do I need to put t = 100 etc in these equations? If I will, then there will be no t in equations. How I will be able to write then it in form of Ax= b where x = [t u v w x y z] '?
Thanks in advance.
0 Comments
Accepted Answer
Sam Chak
on 15 Sep 2022
You have only 4 equations, but there are 6 unknowns. So, the linear system is clearly rank-deficient.
syms t u v w x y z
t = 100;
intersections = [-t + w + x == 100, ...
t - u == 100, ...
v + w - y - z == 0, ...
u + v == 40];
vars = [u, v, w, x, y, z];
[A, b] = equationsToMatrix(intersections, vars)
x = linsolve(A, b)
6 Comments
Torsten
on 15 Sep 2022
If it has to be satisfied, it has to be included. Why do you ask for this specific equation ? Is it different from the others ?
More Answers (0)
See Also
Categories
Find more on Numbers and Precision in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!