A quatity is being solved by a self consistent integration
2 views (last 30 days)
Show older comments
How to find Z from the below equation
here \mathcal{P} means the principal value integration. I was tried in the following way, but couldn't figure out how to solve this,
A = 2000; a = 500; tolerance = 10^-4; Z = 0;
for i = 1 : 10
result = integral(@(x) (x.^2.*((A^2+Z^2)./(A^2+((x.^2+a^2)))) .* (sqrt(x.^2+a^2).*(x.^2+a^2-Z^2)).^(-1)), 0,A, 'PrincipalValue', true);
new_Z = sqrt(result);
if abs(new_Z - Z) < tolerance
Z = new_Z;
break;
end
Z = new_Z;
end
disp(new_Z);
Thank you in advance!
2 Comments
Accepted Answer
Torsten
on 9 May 2024
Edited: Torsten
on 9 May 2024
format long
syms x
A = 2000;
a = 500;
b = 1000;
Z = 0;
for i=1:20
f = x^4*((A^2+Z^2)/(A^2+4*(x^2+a^2)))^4 / (sqrt(x^2+a^2)*(x^2+a^2-Z^2));
I = double(int(f,x,0,A,'PrincipalValue',true));
Zpi = sqrt(b^2-I)
Z = real(Zpi)
end
f = x^4*((A^2+Z^2)/(A^2+4*(x^2+a^2)))^4 / (sqrt(x^2+a^2)*(x^2+a^2-Z^2));
double(Z^2 - b^2 + real(int(f,x,0,A,'PrincipalValue',true)))
2 Comments
Torsten
on 12 May 2024
Edited: Torsten
on 12 May 2024
If the values for A don't change much, you should use the result for Z of the call for A(i) as initial guess for the call with A(i+1).
Further, you could try to solve your equation directly without fixed-point iteration using the "vpasolve" function:
syms Z x
A = 2000;
a = 500;
b = 1000;
f = x^4*((A^2+Z^2)/(A^2+4*(x^2+a^2)))^4 / (sqrt(x^2+a^2)*(x^2+a^2-Z^2));
eqn = Z^2 - b^2 + real(int(f,x,0,A,'PrincipalValue',true)) == 0;
vpasolve(eqn,Z)
More Answers (0)
See Also
Categories
Find more on Calculus in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!