Cody

# Problem 306. Eight Queens Solution Checker

Solution 434625

Submitted on 23 Apr 2014 by Zikobrelli
This solution is locked. To view this solution, you need to provide a solution of the same size or smaller.

### Test Suite

Test Status Code Input and Output
1   Pass
%% Eight Queens Solution Checker Test Suite

2   Pass
%% % Unique solution #6 from % http://en.wikipedia.org/wiki/Eight_queens_puzzle in1 = [ ... 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 ]; out1 = isEightQueensSolution(in1); assert(islogical(out1)); assert(isequal(out1, 1));

v = Columns 1 through 16 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 Column 17 7 v = Columns 1 through 16 1 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 Column 17 7 v = Columns 1 through 16 1 1 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 Column 17 7 v = Columns 1 through 16 1 1 1 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 Column 17 7 v = Columns 1 through 16 1 1 1 1 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 Column 17 7 v = Columns 1 through 16 1 1 1 1 1 -4 -3 -2 -1 0 1 2 3 4 5 6 Column 17 7 v = Columns 1 through 16 1 1 1 1 1 1 -3 -2 -1 0 1 2 3 4 5 6 Column 17 7 v = Columns 1 through 16 1 1 1 1 1 1 1 -2 -1 0 1 2 3 4 5 6 Column 17 7 v = Columns 1 through 16 1 1 1 1 1 1 1 1 -1 0 1 2 3 4 5 6 Column 17 7 v = Columns 1 through 16 1 1 1 1 1 1 1 1 1 0 1 2 3 4 5 6 Column 17 7 v = Columns 1 through 16 1 1 1 1 1 1 1 1 1 1 1 2 3 4 5 6 Column 17 7 v = Columns 1 through 16 1 1 1 1 1 1 1 1 1 1 1 2 3 4 5 6 Column 17 7 v = Columns 1 through 16 1 1 1 1 1 1 1 1 1 1 1 1 3 4 5 6 Column 17 7 v = Columns 1 through 16 1 1 1 1 1 1 1 1 1 1 1 1 1 4 5 6 Column 17 7 v = Columns 1 through 16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 5 6 Column 17 7 v = Columns 1 through 16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 6 Column 17 7 v = Columns 1 through 16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Column 17 7 v = Columns 1 through 16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Column 17 1 ans = 1

3   Pass
%% % Unique solution #7 in2 = [ ... 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 ]; out2 = isEightQueensSolution(in2); assert(isequal(out2, 1));

v = Columns 1 through 16 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 Column 17 7 v = Columns 1 through 16 1 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 Column 17 7 v = Columns 1 through 16 1 1 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 Column 17 7 v = Columns 1 through 16 1 1 1 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 Column 17 7 v = Columns 1 through 16 1 1 1 1 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 Column 17 7 v = Columns 1 through 16 1 1 1 1 1 -4 -3 -2 -1 0 1 2 3 4 5 6 Column 17 7 v = Columns 1 through 16 1 1 1 1 1 1 -3 -2 -1 0 1 2 3 4 5 6 Column 17 7 v = Columns 1 through 16 1 1 1 1 1 1 1 -2 -1 0 1 2 3 4 5 6 Column 17 7 v = Columns 1 through 16 1 1 1 1 1 1 1 1 -1 0 1 2 3 4 5 6 Column 17 7 v = Columns 1 through 16 1 1 1 1 1 1 1 1 1 0 1 2 3 4 5 6 Column 17 7 v = Columns 1 through 16 1 1 1 1 1 1 1 1 1 1 1 2 3 4 5 6 Column 17 7 v = Columns 1 through 16 1 1 1 1 1 1 1 1 1 1 1 2 3 4 5 6 Column 17 7 v = Columns 1 through 16 1 1 1 1 1 1 1 1 1 1 1 1 3 4 5 6 Column 17 7 v = Columns 1 through 16 1 1 1 1 1 1 1 1 1 1 1 1 1 4 5 6 Column 17 7 v = Columns 1 through 16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 5 6 Column 17 7 v = Columns 1 through 16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 6 Column 17 7 v = Columns 1 through 16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Column 17 7 v = Columns 1 through 16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Column 17 1 ans = 1

4   Pass
%% % Unique solution #10 in3 = [ ... 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 ]; out3 = isEightQueensSolution(in3); assert(isequal(out3, 1));

v = Columns 1 through 16 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 Column 17 7 v = Columns 1 through 16 1 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 Column 17 7 v = Columns 1 through 16 1 1 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 Column 17 7 v = Columns 1 through 16 1 1 1 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 Column 17 7 v = Columns 1 through 16 1 1 1 1 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 Column 17 7 v = Columns 1 through 16 1 1 1 1 1 -4 -3 -2 -1 0 1 2 3 4 5 6 Column 17 7 v = Columns 1 through 16 1 1 1 1 1 1 -3 -2 -1 0 1 2 3 4 5 6 Column 17 7 v = Columns 1 through 16 1 1 1 1 1 1 1 -2 -1 0 1 2 3 4 5 6 Column 17 7 v = Columns 1 through 16 1 1 1 1 1 1 1 1 -1 0 1 2 3 4 5 6 Column 17 7 v = Columns 1 through 16 1 1 1 1 1 1 1 1 1 0 1 2 3 4 5 6 Column 17 7 v = Columns 1 through 16 1 1 1 1 1 1 1 1 1 1 1 2 3 4 5 6 Column 17 7 v = Columns 1 through 16 1 1 1 1 1 1 1 1 1 1 1 2 3 4 5 6 Column 17 7 v = Columns 1 through 16 1 1 1 1 1 1 1 1 1 1 1 1 3 4 5 6 Column 17 7 v = Columns 1 through 16 1 1 1 1 1 1 1 1 1 1 1 1 1 4 5 6 Column 17 7 v = Columns 1 through 16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 5 6 Column 17 7 v = Columns 1 through 16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 6 Column 17 7 v = Columns 1 through 16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Column 17 7 v = Columns 1 through 16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Column 17 1 ans = 1

5   Pass
%% % Unique solution #11 in4 = [ ... 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 ]; out4 = isEightQueensSolution(in4); assert(isequal(out4, 1));

v = Columns 1 through 16 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 Column 17 7 v = Columns 1 through 16 1 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 Column 17 7 v = Columns 1 through 16 1 1 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 Column 17 7 v = Columns 1 through 16 1 1 1 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 Column 17 7 v = Columns 1 through 16 1 1 1 1 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 Column 17 7 v = Columns 1 through 16 1 1 1 1 1 -4 -3 -2 -1 0 1 2 3 4 5 6 Column 17 7 v = Columns 1 through 16 1 1 1 1 1 1 -3 -2 -1 0 1 2 3 4 5 6 Column 17 7 v = Columns 1 through 16 1 1 1 1 1 1 1 -2 -1 0 1 2 3 4 5 6 Column 17 7 v = Columns 1 through 16 1 1 1 1 1 1 1 1 -1 0 1 2 3 4 5 6 Column 17 7 v = Columns 1 through 16 1 1 1 1 1 1 1 1 1 0 1 2 3 4 5 6 Column 17 7 v = Columns 1 through 16 1 1 1 1 1 1 1 1 1 1 1 2 3 4 5 6 Column 17 7 v = Columns 1 through 16 1 1 1 1 1 1 1 1 1 1 1 2 3 4 5 6 Column 17 7 v = Columns 1 through 16 1 1 1 1 1 1 1 1 1 1 1 1 3 4 5 6 Column 17 7 v = Columns 1 through 16 1 1 1 1 1 1 1 1 1 1 1 1 1 4 5 6 Column 17 7 v = Columns 1 through 16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 5 6 Column 17 7 v = Columns 1 through 16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 6 Column 17 7 v = Columns 1 through 16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Column 17 7 v = Columns 1 through 16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Column 17 1 ans = 1

6   Pass
%% in5 = [ ... 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 ]; out5 = isEightQueensSolution(in5); assert(isequal(out5, 0));

v = Columns 1 through 16 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 Column 17 7 v = Columns 1 through 16 1 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 Column 17 7 v = Columns 1 through 16 1 1 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 Column 17 7 v = Columns 1 through 16 1 1 1 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 Column 17 7 v = Columns 1 through 16 1 1 1 1 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 Column 17 7 v = Columns 1 through 16 1 1 1 1 1 -4 -3 -2 -1 0 1 2 3 4 5 6 Column 17 7 v = Columns 1 through 16 1 1 1 1 1 1 -3 -2 -1 0 1 2 3 4 5 6 Column 17 7 v = Columns 1 through 16 1 1 1 1 1 1 1 -2 -1 0 1 2 3 4 5 6 Column 17 7 v = Columns 1 through 16 1 1 1 1 1 1 1 1 -1 0 1 2 3 4 5 6 Column 17 7 v = Columns 1 through 16 1 1 1 1 1 1 1 1 1 0 1 2 3 4 5 6 Column 17 7 v = Columns 1 through 16 1 1 1 1 1 1 1 1 1 1 1 2 3 4 5 6 Column 17 7 v = Columns 1 through 16 1 1 1 1 1 1 1 1 1 1 0 2 3 4 5 6 Column 17 7 v = Columns 1 through 16 1 1 1 1 1 1 1 1 1 1 0 1 3 4 5 6 Column 17 7 v = Columns 1 through 16 1 1 1 1 1 1 1 1 1 1 0 1 1 4 5 6 Column 17 7 v = Columns 1 through 16 1 1 1 1 1 1 1 1 1 1 0 1 1 0 5 6 Column 17 7 v = Columns 1 through 16 1 1 1 1 1 1 1 1 1 1 0 1 1 0 1 6 Column 17 7 v = Columns 1 through 16 1 1 1 1 1 1 1 1 1 1 0 1 1 0 1 1 Column 17 7 v = Columns 1 through 16 1 1 1 1 1 1 1 1 1 1 0 1 1 0 1 1 Column 17 1 ans = 0

7   Pass
%% in6 = [ ... 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 ]; out6 = isEightQueensSolution(in6); assert(isequal(out6, 0));

v = Columns 1 through 16 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 Column 17 7 v = Columns 1 through 16 1 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 Column 17 7 v = Columns 1 through 16 1 1 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 Column 17 7 v = Columns 1 through 16 1 1 1 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 Column 17 7 v = Columns 1 through 16 1 1 1 1 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 Column 17 7 v = Columns 1 through 16 1 1 1 1 1 -4 -3 -2 -1 0 1 2 3 4 5 6 Column 17 7 v = Columns 1 through 16 1 1 1 1 1 1 -3 -2 -1 0 1 2 3 4 5 6 Column 17 7 v = Columns 1 through 16 1 1 1 1 1 1 1 -2 -1 0 1 2 3 4 5 6 Column 17 7 v = Columns 1 through 16 1 1 1 1 1 1 1 1 -1 0 1 2 3 4 5 6 Column 17 7 v = Columns 1 through 16 1 1 1 1 1 1 1 1 1 0 1 2 3 4 5 6 Column 17 7 v = Columns 1 through 16 1 1 1 1 1 1 1 1 1 1 1 2 3 4 5 6 Column 17 7 v = Columns 1 through 16 1 1 1 1 1 1 1 1 1 1 1 2 3 4 5 6 Column 17 7 v = Columns 1 through 16 1 1 1 1 1 1 1 1 1 1 1 0 3 4 5 6 Column 17 7 v = Columns 1 through 16 1 1 1 1 1 1 1 1 1 1 1 0 1 4 5 6 Column 17 7 v = Columns 1 through 16 1 1 1 1 1 1 1 1 1 1 1 0 1 1 5 6 Column 17 7 v = Columns 1 through 16 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 6 Column 17 7 v = Columns 1 through 16 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 Column 17 7 v = Columns 1 through 16 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 Column 17 1 ans = 0

8   Pass
%% in7 = [ ... 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 ]; out7 = isEightQueensSolution(in7); assert(isequal(out7, 0));

v = Columns 1 through 16 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 Column 17 7 v = Columns 1 through 16 1 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 Column 17 7 v = Columns 1 through 16 1 1 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 Column 17 7 v = Columns 1 through 16 1 1 1 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 Column 17 7 v = Columns 1 through 16 1 1 1 1 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 Column 17 7 v = Columns 1 through 16 1 1 1 1 1 -4 -3 -2 -1 0 1 2 3 4 5 6 Column 17 7 v = Columns 1 through 16 1 1 1 1 1 1 -3 -2 -1 0 1 2 3 4 5 6 Column 17 7 v = Columns 1 through 16 1 1 1 1 1 1 0 -2 -1 0 1 2 3 4 5 6 Column 17 7 v = Columns 1 through 16 1 1 1 1 1 1 0 1 -1 0 1 2 3 4 5 6 Column 17 7 v = Columns 1 through 16 1 1 1 1 1 1 0 1 1 0 1 2 3 4 5 6 Column 17 7 v = Columns 1 through 16 1 1 1 1 1 1 0 1 1 1 1 2 3 4 5 6 Column 17 7 v = Columns 1 through 16 1 1 1 1 1 1 0 1 1 1 1 2 3 4 5 6 Column 17 7 v = Columns 1 through 16 1 1 1 1 1 1 0 1 1 1 1 1 3 4 5 6 Column 17 7 v = Columns 1 through 16 1 1 1 1 1 1 0 1 1 1 1 1 1 4 5 6 Column 17 7 v = Columns 1 through 16 1 1 1 1 1 1 0 1 1 1 1 1 1 1 5 6 Column 17 7 v = Columns 1 through 16 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 6 Column 17 7 v = Columns 1 through 16 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 Column 17 7 v = Columns 1 through 16 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 Column 17 1 ans = 0

9   Pass
%% in8 = [ ... 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 ]; out8 = isEightQueensSolution(in8); assert(isequal(out8, 0));

v = Columns 1 through 16 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 Column 17 7 v = Columns 1 through 16 1 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 Column 17 7 v = Columns 1 through 16 1 1 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 Column 17 7 v = Columns 1 through 16 1 1 1 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 Column 17 7 v = Columns 1 through 16 1 1 1 1 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 Column 17 7 v = Columns 1 through 16 1 1 1 1 1 -4 -3 -2 -1 0 1 2 3 4 5 6 Column 17 7 v = Columns 1 through 16 1 1 1 1 1 1 -3 -2 -1 0 1 2 3 4 5 6 Column 17 7 v = Columns 1 through 16 1 1 1 1 1 1 1 -2 -1 0 1 2 3 4 5 6 Column 17 7 v = Columns 1 through 16 1 1 1 1 1 1 1 1 -1 0 1 2 3 4 5 6 Column 17 7 v = Columns 1 through 16 1 1 1 1 1 1 1 1 1 0 1 2 3 4 5 6 Column 17 7 v = Columns 1 through 16 1 1 1 1 1 1 1 1 1 1 1 2 3 4 5 6 Column 17 7 v = Columns 1 through 16 1 1 1 1 1 1 1 1 1 1 1 2 3 4 5 6 Column 17 7 v = Columns 1 through 16 1 1 1 1 1 1 1 1 1 1 1 1 3 4 5 6 Column 17 7 v = Columns 1 through 16 1 1 1 1 1 1 1 1 1 1 1 1 1 4 5 6 Column 17 7 v = Columns 1 through 16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 5 6 Column 17 7 v = Columns 1 through 16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 6 Column 17 7 v = Columns 1 through 16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Column 17 7 v = Columns 1 through 16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Column 17 1 ans = 0

10   Pass
%% % Only 7 queens in9 = [ ... 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 ]; out9 = isEightQueensSolution(in9); assert(isequal(out9, 0));

v = Columns 1 through 16 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 Column 17 7 v = Columns 1 through 16 1 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 Column 17 7 v = Columns 1 through 16 1 1 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 Column 17 7 v = Columns 1 through 16 1 1 1 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 Column 17 7 v = Columns 1 through 16 1 1 1 1 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 Column 17 7 v = Columns 1 through 16 1 1 1 1 1 -4 -3 -2 -1 0 1 2 3 4 5 6 Column 17 7 v = Columns 1 through 16 1 1 1 1 1 1 -3 -2 -1 0 1 2 3 4 5 6 Column 17 7 v = Columns 1 through 16 1 1 1 1 1 1 1 -2 -1 0 1 2 3 4 5 6 Column 17 7 v = Columns 1 through 16 1 1 1 1 1 1 1 1 -1 0 1 2 3 4 5 6 Column 17 7 v = Columns 1 through 16 1 1 1 1 1 1 1 1 1 0 1 2 3 4 5 6 Column 17 7 v = Columns 1 through 16 1 1 1 1 1 1 1 1 1 1 1 2 3 4 5 6 Column 17 7 v = Columns 1 through 16 1 1 1 1 1 1 1 1 1 1 1 2 3 4 5 6 Column 17 7 v = Columns 1 through 16 1 1 1 1 1 1 1 1 1 1 1 1 3 4 5 6 Column 17 7 v = Columns 1 through 16 1 1 1 1 1 1 1 1 1 1 1 1 1 4 5 6 Column 17 7 v = Columns 1 through 16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 5 6 Column 17 7 v = Columns 1 through 16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 6 Column 17 7 v = Columns 1 through 16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Column 17 7 v = Columns 1 through 16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Column 17 1 ans = 0

11   Fail

### Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!