Cody

Problem 485. Fletcher-Reeves Conjugate Gradient Method

Solution 235249

Submitted on 24 Apr 2013 by Stefie Bartley
This solution is locked. To view this solution, you need to provide a solution of the same size or smaller.

Test Suite

Test Status Code Input and Output
1   Pass
%% % Rosenbrock's banana function F=@(x) 100*(x(2)-x(1).^2).^2 + (1-x(1)).^2; gradF=@(x) [100*(4*x(1).^3-4*x(1).*x(2))+2*x(1)-2; 100*(2*x(2)-2*x(1).^2)]; x0 = [-1.9; 2.0]; x1=[ -1.4478 2.1184]; x2=[ 1.7064 2.9446]; f1=6.0419; f2=0.6068; [xmin,fmin]=ConjGrad(F,gradF,x0,0.01,1) % single steepest descent assert(norm(xmin-x1)<0.2||norm(xmin-x2)<0.2) assert( abs(fmin-f1)<0.5|| abs(fmin-f2)<0.5) % 2 local min

iter alpha f(alpha) norm(c) 1 0.000 267.6200 14.1065 1 0.000 6.0719 14.1065 xmin = -1.4452 2.1191 fmin = 6.0719

2   Pass
%% % Rosenbrock's banana function F=@(x) 100*(x(2)-x(1).^2).^2 + (1-x(1)).^2; gradF=@(x) [100*(4*x(1).^3-4*x(1).*x(2))+2*x(1)-2; 100*(2*x(2)-2*x(1).^2)]; x0 = [0; 0]; xcorrect=[ 0.2926 0.0505]; fcorrect=0.6238; [xmin,fmin]=ConjGrad(F,gradF,x0,1e-2,2) % two iterations assert(norm(xmin-xcorrect)<0.1) assert( abs(fmin-fcorrect)<0.01)

iter alpha f(alpha) norm(c) 1 0.000 1.0000 5.2020 2 0.013 0.6177 3.9977 xmin = 0.2269 0.0656 fmin = 0.6177

3   Pass
%% % Rosenbrock's banana function F=@(x) 100*(x(2)-x(1).^2).^2 + (1-x(1)).^2; gradF=@(x) [100*(4*x(1).^3-4*x(1).*x(2))+2*x(1)-2; 100*(2*x(2)-2*x(1).^2)]; x0 = [1.1;0.9]; xcorrect = [1;1]; fcorrect = 0; [xmin,fmin]=ConjGrad(F,gradF,x0) % default 20 iterations assert(norm(xmin-xcorrect)<0.1) assert(abs(fmin-fcorrect)<0.01);

iter alpha f(alpha) norm(c) 1 0.000 9.6200 0.4621 14 0.001 0.0000 0.0001 xmin = 1.0000 0.9999 fmin = 9.1443e-10

4   Pass
%% % Rosenbrock's banana function F=@(x) 100*(x(2)-x(1).^2).^2 + (1-x(1)).^2; gradF=@(x) [100*(4*x(1).^3-4*x(1).*x(2))+2*x(1)-2; 100*(2*x(2)-2*x(1).^2)]; x0 = [0; 0]; xcorrect = [1;1]; fcorrect = 0; [xmin,fmin]=ConjGrad(F,gradF,x0,0.01,100) % Convergence before 100 iterations assert(norm(xmin-xcorrect)<0.1) assert(abs(fmin-fcorrect)<0.01);

iter alpha f(alpha) norm(c) 1 0.000 1.0000 5.2020 24 0.001 0.0000 0.0057 xmin = 0.9987 0.9974 fmin = 1.6798e-06

5   Pass
%% % Rosenbrock's banana function F=@(x) 100*(x(2)-x(1).^2).^2 + (1-x(1)).^2; gradF=@(x) [100*(4*x(1).^3-4*x(1).*x(2))+2*x(1)-2; 100*(2*x(2)-2*x(1).^2)]; x0 = [-1.9; 2]; xcorrect = [1;1]; fcorrect = 0; [xmin,fmin]=ConjGrad(F,gradF,x0,1e-3,200) assert(isequal(round(xmin),xcorrect)) assert(isequal(round(fmin),fcorrect))

iter alpha f(alpha) norm(c) 1 0.000 267.6200 14.1065 51 0.002 0.0000 0.0009 xmin = 0.9999 0.9998 fmin = 1.4181e-08

Suggested Problems

More from this Author17

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!