Cody

Problem 493. Quasi-Newton Method for Unconstrained Minimization using BFGS Update

Solution 2585821

Submitted on 19 Jun 2020 by Rafael S.T. Vieira
This solution is locked. To view this solution, you need to provide a solution of the same size or smaller.

Test Suite

Test Status Code Input and Output
1   Pass
% Rosenbrock's banana function F=@(x) 100*(x(2)-x(1).^2).^2 + (1-x(1)).^2; gradF=@(x) [100*(4*x(1).^3-4*x(1).*x(2))+2*x(1)-2; 100*(2*x(2)-2*x(1).^2)]; x0 = [-1.9; 2.0]; x1=[ -1.4478 2.1184]; x2=[ 1.7064 2.9446]; f1=6.0419; f2=0.6068; [xmin,fmin]=BFGS_Quasi_Newton(F,gradF,x0,0.01,1) % single steepest descent assert(norm(xmin-x1)<0.2||norm(xmin-x2)<0.2) assert( abs(fmin-f1)<0.5|| abs(fmin-f2)<0.5) % 2 local min

iter alpha f(alpha) norm(c) 0 0.000000 267.6200 1270.8691 1 -0.0004 6.0204 1.6920 xmin = -1.4522 2.1173 fmin = 6.0204

2   Pass
% Rosenbrock's banana function F=@(x) 100*(x(2)-x(1).^2).^2 + (1-x(1)).^2; gradF=@(x) [100*(4*x(1).^3-4*x(1).*x(2))+2*x(1)-2; 100*(2*x(2)-2*x(1).^2)]; x0 = [0; 0]; xcorrect=[ 0.2927 0.0506]; fcorrect=0.63; [xmin,fmin]=BFGS_Quasi_Newton(F,gradF,x0,1e-2,2) % two iterations assert(norm(xmin-xcorrect)<0.1) assert( abs(fmin-fcorrect)<0.01)

iter alpha f(alpha) norm(c) 0 0.000000 1.0000 2.0000 2 -0.0098 0.6237 7.5488 xmin = 0.2931 0.0507 fmin = 0.6237

3   Pass
% Rosenbrock's banana function F=@(x) 100*(x(2)-x(1).^2).^2 + (1-x(1)).^2; gradF=@(x) [100*(4*x(1).^3-4*x(1).*x(2))+2*x(1)-2; 100*(2*x(2)-2*x(1).^2)]; x0 = [0;0]; xcorrect = [1;1;]; fcorrect = 0; [xmin,fmin]=BFGS_Quasi_Newton(F,gradF,x0) assert(norm(xmin-xcorrect)<0.01) assert(abs(fmin-fcorrect)<0.01);

iter alpha f(alpha) norm(c) 0 0.000000 1.0000 2.0000 13 -1.1440 0.0000 0.0000 xmin = 1.0000 1.0000 fmin = 7.2406e-13

4   Pass
% Rosenbrock's banana function F=@(x) 100*(x(2)-x(1).^2).^2 + (1-x(1)).^2; gradF=@(x) [100*(4*x(1).^3-4*x(1).*x(2))+2*x(1)-2; 100*(2*x(2)-2*x(1).^2)]; HessF=@(x) 200*[4*x(1).^2-2*(x(2)-x(1).^2)+1/100, -2*x(1); -2*x(1), 1]; xcorrect = [1;1]; fcorrect = 0; x0 = [-1.9; 2]; [xmin,fmin]=BFGS_Quasi_Newton(F,gradF,x0,1e-4) assert(isequal(round(xmin),xcorrect)) assert(isequal(round(fmin),fcorrect))

iter alpha f(alpha) norm(c) 0 0.000000 267.6200 1270.8691 28 -1.0511 0.0000 0.0000 xmin = 1.0000 1.0000 fmin = 2.3649e-18