Test | Status | Code Input and Output |
---|---|---|
1 | Pass |
%%
% Input: BB Temp, Lo Wavelength, Hi Wavelength, Integration steps
% Output radiance in ph/m2/sec/ster
% Nominal steps of 1000 yields accuracy and timeliness
lo=3.0;
hi=5.0;
T=250.0;
% Radiance = 4.96124998 e18 ph/m2/sec/ster
ts=cputime;
rad_entry=Calc_Radiance(lo,hi,T)
tc=cputime;
dt=1000*(tc-ts) % Processing Time in ms
rad_correct = 4.96124998e18; % ph/m2/sec/ster
tol=.00001;
Pass=rad_entry>rad_correct*(1- tol) & rad_entry<rad_correct*(1+ tol) & dt<100;
assert(isequal(Pass,1))
rad_entry =
4.9612e+18
dt =
80.0000
|
2 | Pass |
%%
% Input: BB Temp, Lo Wavelength, Hi Wavelength, Integration steps
% Output radiance in ph/m2/sec/ster
% Nominal steps of 1000 yields accuracy and timeliness
lo=3.0;
hi=5.0;
T=300.0;
% Radiance = 4.1826971 e19 ph/m2/sec/ster
ts=cputime;
rad_entry=Calc_Radiance(lo,hi,T)
tc=cputime;
dt=1000*(tc-ts) % Processing Time in ms
rad_correct = 4.1826971e19; % ph/m2/sec/ster
tol=.00001;
Pass=rad_entry>rad_correct*(1- tol) & rad_entry<rad_correct*(1+ tol) & dt<100;
assert(isequal(Pass,1))
rad_entry =
4.1827e+19
dt =
10.0000
|
3 | Pass |
%%
% Input: BB Temp, Lo Wavelength, Hi Wavelength, Integration steps
% Output radiance in ph/m2/sec/ster
% Nominal steps of 1000 yields accuracy and timeliness
lo=8.0;
hi=12.0;
T=280.0;
% Radiance = 1.37122128 e21 ph/m2/sec/ster
ts=cputime;
rad_entry=Calc_Radiance(lo,hi,T)
tc=cputime;
dt=1000*(tc-ts) % Processing Time in ms
rad_correct = 1.37122128e21; % ph/m2/sec/ster
tol=.00001;
Pass=rad_entry>rad_correct*(1- tol) & rad_entry<rad_correct*(1+ tol) & dt<100;
assert(isequal(Pass,1))
rad_entry =
1.3712e+21
dt =
0
|
4 | Pass |
%%
% Input: BB Temp, Lo Wavelength, Hi Wavelength, Integration steps
% Output radiance in ph/m2/sec/ster
% Nominal steps of 1000 yields accuracy and timeliness
% Add random to block answer writers
lo=3.0+rand
hi=5.0+rand
T=250.0;
% Radiance = To be calculated ph/m2/sec/ster
c1p=1.88365e23; % sec^-1cm^-2micron^3
c2=1.43879e4; % micron K
steps=1000;
x=lo:(hi-lo)/steps:hi;
% Planck Vectorized for Trapz
y=1e8./(x.^4.*(exp(c2./(x.*T))-1));
% Leading 1e8 is for numerical processing accuracy
z=trapz(x,y);
rad_correct=z*1e4*c1p/pi()/1e8 % 1e4 normalizes from cm-2 to m-2
ts=cputime;
rad_entry=Calc_Radiance(lo,hi,T)
tc=cputime;
dt=1000*(tc-ts) % Processing Time in ms
tol=.00001;
Pass=rad_entry>rad_correct*(1- tol) & rad_entry<rad_correct*(1+ tol) & dt<100;
assert(isequal(Pass,1))
lo =
3.8763
hi =
5.4886
rad_correct =
1.1397e+19
rad_entry =
1.1397e+19
dt =
0
|
Find common elements in matrix rows
810 Solvers
Project Euler: Problem 3, Largest prime factor
167 Solvers
177 Solvers
Implement simple rotation cypher
805 Solvers
Matrix with different incremental runs
194 Solvers