Test | Status | Code Input and Output |
---|---|---|
1 | Pass |
x = [0 1;1 1];
tf = true;
assert(isequal(isFibMat(x),tf))
clear all;
|
2 | Pass |
x = [1 0;1 1];
tf = false;
assert(isequal(isFibMat(x),tf))
clear all;
|
3 | Pass |
x = [0 1;1 1]^40;
tf = true;
assert(isequal(isFibMat(x),tf))
clear all;
|
4 | Pass |
x = [0 1;1 1]^40+1;
tf = false;
assert(isequal(isFibMat(x),tf))
clear all;
|
5 | Pass |
x = [0 1;1 1]^17;
tf = true;
assert(isequal(isFibMat(x),tf))
clear all;
|
6 | Pass |
x = [0 1;1 1]^17-5;
tf = false;
assert(isequal(isFibMat(x),tf))
clear all;
|
7 | Pass |
x = [0 0 1;0 1 1;1 1 1]^3;
tf = false;
assert(isequal(isFibMat(x),tf))
clear all;
|
8 | Pass |
x = [0 0 1;0 1 1];
tf = false;
assert(isequal(isFibMat(x),tf))
clear all;
|
9 | Pass |
x = [[0 1;1 1]^3 [5; 8]];
tf = false;
assert(isequal(isFibMat(x),tf))
clear all;
|
10 | Pass |
x = uint8([0 1; 1 1]^5);
tf = true;
assert(isequal(isFibMat(x),tf))
clear all;
|
11 | Pass |
x = -([0 1; 1 1]^5);
tf = false;
assert(isequal(isFibMat(x),tf))
clear all;
|
12 | Pass |
x = [0 1; 1 1]^5;
x(2) = nan;
tf = false;
assert(isequal(isFibMat(x),tf))
clear all;
|
13 | Pass |
x = [4 7;7 11];
tf = false;
assert(isequal(isFibMat(x),tf))
clear all;
|
14 | Pass |
for ii = 1:55
assert(true==isFibMat([0 1;1 1]^ii))
end
|
All your base are belong to us
463 Solvers
Basics: 'Find the eigenvalues of given matrix
323 Solvers
Golomb's self-describing sequence (based on Euler 341)
106 Solvers
Create an n-by-n null matrix and fill with ones certain positions
269 Solvers
(Linear) Recurrence Equations - Generalised Fibonacci-like sequences
150 Solvers
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!