14 Downloads
Updated 16 Sep 2020
NASNet-Large is a pretrained model that has been trained on a subset of the ImageNet database. This is one of the models from the NASNet architecture family. NASNet architectures were learned from data using a recurrent neural network instead of being fully designed by humans like the other pretrained models.
This model is trained on more than a million images and can classify images into 1000 object categories (e.g. keyboard, mouse, pencil, and many animals).
Opening the nasnetlarge.mlpkginstall file from your operating system or from within MATLAB will initiate the installation process for the release you have.
This mlpkginstall file is functional for R2019a and beyond.
Usage Example:
% Access the trained model
net = nasnetlarge();
% See details of the architecture
net.Layers
% Read the image to classify
I = imread('peppers.png');
% Adjust size of the image
sz = net.Layers(1).InputSize
I = I(1:sz(1),1:sz(2),1:sz(3));
% Classify the image using nasnetlarge
label = classify(net, I)
% Show the image and the classification results
figure
imshow(I)
text(10,20,char(label),'Color','white')
To learn more about the network, please visit the documentation page: https://www.mathworks.com/help/deeplearning/ref/nasnetlarge.html
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!Create scripts with code, output, and formatted text in a single executable document.
Dear DeepLearning Team,
I am using the Matlab R2019b (updated) on Ubuntu, When I train the nasnetlarge network , I get the below error:
"Error using trainNetwork (line 170)
Too many input arguments.
Caused by:
Error using rescale
Too many input arguments."
Do you know what is the problem?
Best,