## 11 Classical Time Series Forecasting Methods in MATLAB

Version 1.0.1 (320 KB) by
In this article, it listed some classical time series techniques available in MATLAB, you may try them on your forecasting problem.

Updated Tue, 11 Feb 2020 08:11:35 +0000

From GitHub

The blooming of machine learning implementation, it has raised interest from different industries to adopt it for classification and forecasting on time series problem.

Before exploring machine learning methods for time series, it is good idea to ensure you have tried classical and statistical time series forecasting methods, those methods are still performing well on a wide range of problems, provided the data is suitably prepared and the method is well configured.
In this article, it listed some classical time series techniques available in MATLAB, you may try them on your forecasting problem prior to exploring to machine learning methods.
It give you hints on each method to get started with a working code example and where to look to get more information on the method.

Overview:
This article demostrates 11 different classical time series forecasting methods, they are
1) Autoregression (AR)
2) Moving Average
3) Autoregressive Moving Average
4) Autoregressive Integrated Moving Average (ARIMA)
5) Seasonal Autoregressive Integrated Moving-Average (SARIMA)
6) Seasonal Autoregressive Integrated Moving Average with Exogenous Regressors (SARIMAX)
8) Regression Model with ARIMA Error
9) Vector Autoregression (VAR)
10) GARCH Model
11) Glostan, Jagannathan and Runkle GARCH Model

My other revelevant articles:
1) VAR Model To Predict Malaysia/U.S. Foreign Exchange Rate
https://www.mathworks.com/matlabcentral/fileexchange/71767-var-model-to-predict-malaysia-u-s-foreign-exchange-rate
2) Stock Prediction Using ARIMA
https://www.mathworks.com/matlabcentral/fileexchange/68576-stock-prediction-using-arima
3) GDP Prediction Using ARIMA and NAR Neural Network
https://www.mathworks.com/matlabcentral/fileexchange/68389-gdp-prediction-using-arima-and-nar-neural-network

### Cite As

Kevin Chng (2023). 11 Classical Time Series Forecasting Methods in MATLAB (https://github.com/KevinChngJY/timeseriesinmatlab), GitHub. Retrieved .

##### MATLAB Release Compatibility
Created with R2019b
Compatible with any release
##### Platform Compatibility
Windows macOS Linux

### Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Versions that use the GitHub default branch cannot be downloaded

Version Published Release Notes
1.0.1

Change description

1.0.0

To view or report issues in this GitHub add-on, visit the GitHub Repository.
To view or report issues in this GitHub add-on, visit the GitHub Repository.