Building AI Applications for Signals and Time Series Data
AI techniques can be applied to signal and time series data to classify signals, identify events of interest and anomalies, and make intelligent decisions at edge computing nodes. In this session, you will see how to use MATLAB® to build robust real-world applications for communications, digital health, and machine health monitoring.
You’ll also learn tips and tricks to speed up data preparation, improve network accuracy and performance, and work with less training data. You’ll see the latest features for:
- Data synthesis through apps, simulation, and GANs
- Automated signal labeling techniques using the Signal Labeler app
- Advanced preprocessing and feature extraction techniques to improve deep networks, including automated feature extraction techniques and single line deep learning
- Deployment to embedded devices and GPUs
Published: 30 May 2021
Featured Product
Signal Processing Toolbox
Up Next:
Related Videos:
Select a Web Site
Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: .
You can also select a web site from the following list
How to Get Best Site Performance
Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.
Americas
- América Latina (Español)
- Canada (English)
- United States (English)
Europe
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)
Asia Pacific
- Australia (English)
- India (English)
- New Zealand (English)
- 中国
- 日本Japanese (日本語)
- 한국Korean (한국어)