Dan Doherty, MathWorks
Learn how MATLAB users can leverage NVIDIA GPUs to accelerate computationally intensive applications in areas such as image processing, signal processing, and computational finance. We show the GPU-enabled functionality in MATLAB and various add-on toolboxes, and demonstrate how you can integrate your own custom CUDA kernels into MATLAB. We also demonstrate how MATLAB supports CUDA kernel development by providing a high-level language and development environment for prototyping algorithms and incrementally developing and testing CUDA kernels.
A wave propagation example will be used to demonstrate these capabilities and the speedups achieved through GPU computing.
About the Presenter: Dan Doherty works as a Partner Manager at MathWorks, focusing on NVIDIA and other partners in the HPC area. Prior to working as Partner Manager, Dan was a Product Manager at MathWorks for over 7 years, focusing on MATLAB and core math and data analysis products. Dan received a B.S.E. and M.S.E. in Mechanical Engineering from the University of New Hampshire, where his research focused on prediction of cutting forces during CNC machining.
Recorded: 22 Jul 2014
Featured Product
Select a Web Site
Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: .
Select web siteYou can also select a web site from the following list:
Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.
This website uses cookies to improve your user experience, personalize content and ads, and analyze website traffic. By continuing to use this website, you consent to our use of cookies. Please see our Privacy Policy to learn more about cookies and how to change your settings.