Lithiumion, lithiumpolymer, or leadacid battery
Powertrain Blockset / Energy Storage and Auxiliary Drive / Datasheet Battery
The Datasheet Battery block implements a lithiumion, lithiumpolymer, or leadacid battery that you can parameterize using manufacturer data. To create the opencircuit voltage and internal resistance parameters that you need for the block, use the manufacturer discharge characteristics by temperature data. For an example, see Generate Parameter Data for Datasheet Battery Block.
To determine the battery output voltage, the block uses lookup tables for the battery opencircuit voltage and the internal resistance. The lookup tables are functions of the stateof charge (SOC) and battery temperature, characterizing the battery performance at various operating points:
$$\begin{array}{l}{E}_{m}=f(SOC)\\ {R}_{int}=f(T,SOC)\end{array}$$
To calculate the voltage, the block implements these equations.
$$\begin{array}{l}{V}_{T}={E}_{m}+{I}_{batt}{R}_{int}\\ {I}_{batt}=\frac{{I}_{in}}{{N}_{p}}\\ {V}_{out}=\{\begin{array}{c}{N}_{s}{V}_{T}\text{unfiltered}\\ \frac{{V}_{out}}{\tau s+1}\text{filtered}\end{array}\\ SOC=\frac{1}{Ca{p}_{batt}}{\displaystyle \underset{0}{\overset{t}{\int}}{I}_{batt}}dt\\ L{d}_{AmpHr}={\displaystyle \underset{0}{\overset{t}{\int}}{I}_{batt}}dt\end{array}$$
Positive current indicates battery discharge. Negative current indicates battery charge.
For the power accounting, the block implements these equations.
Bus Signal  Description  Equations  



 Battery network power  $\begin{array}{l}{V}_{batt}={V}_{out}\text{OR}\frac{{V}_{out}}{\tau s+1}\\ \\ {P}_{batt}={V}_{batt}{I}_{batt}\\ {P}_{LdBatt}={P}_{batt}\end{array}$ 

 Battery network power loss  $${P}_{LossBatt}={N}_{p}{N}_{s}{I}_{batt}{}^{2}{R}_{int}$$  

 Battery network power stored  ${P}_{StoredBatt}={P}_{Batt}+{P}_{LossBatt}$ 
The equations use these variables.
SOC  Stateofcharge 
E_{m}  Battery opencircuit voltage 
I_{batt}  Per module battery current 
P_{LdBatt}  Battery network power 
P_{batt}  Battery power 
P_{LossBatt}  Battery network power loss 
P_{StoredBatt}  Battery network power stored 
I_{in}  Combined current flowing from the battery network 
R_{int}  Battery internal resistance 
N_{s}  Number of cells in series 
N_{p}  Number of cells in parallel 
V_{out}, V_{batt}  Combined voltage of the battery network 
V_{T}  Per module battery voltage 
Cap_{batt}  Battery capacity 
Ld_{AmpHr}  Battery energy 
[1] Arrhenius, S.A. “Über die Dissociationswärme und den Einflusß der Temperatur auf den Dissociationsgrad der Elektrolyte.” Journal of Physical Chemistry. 4 (1889): 96–116.
[2] Connors, K. Chemical Kinetics. New York: VCH Publishers, 1990.
[3] Ji, Yan, Yancheng Zhang, and ChaoYang Wang. Journal of the Electrochemical Society. Volume 160, Issue 4 (2013), A636A649.