Detect Overflows
This example shows how to detect overflows at the command line. At the numerical testing stage in the conversion process, the tool simulates the fixed-point code using scaled doubles. It then reports which expressions in the generated code produce values that would overflow the fixed-point data type.
Prerequisites
To complete this example, you must install the following products:
MATLAB®
MATLAB Coder™
Fixed-Point Designer™
In a local, writable folder, create a function, overflow
.
function y = overflow(b,x,reset) if nargin<3, reset = true; end persistent z p if isempty(z) || reset p = 0; z = zeros(size(b)); end [y,z,p] = fir_filter(b,x,z,p); end function [y,z,p] = fir_filter(b,x,z,p) y = zeros(size(x)); nx = length(x); nb = length(b); for n = 1:nx p=p+1; if p>nb, p=1; end z(p) = x(n); acc = 0; k = p; for j=1:nb acc = acc + b(j)*z(k); k=k-1; if k<1, k=nb; end end y(n) = acc; end end
Create a test file, overflow_test.m
to
exercise the overflow
algorithm.
function overflow_test % The filter coefficients were computed using the FIR1 function from % Signal Processing Toolbox. % b = fir1(11,0.25); b = [-0.004465461051254 -0.004324228005260 +0.012676739550326 +0.074351188907780 +0.172173206073645 +0.249588554524763 +0.249588554524763 +0.172173206073645 +0.074351188907780 +0.012676739550326 -0.004324228005260 -0.004465461051254]'; % Input signal nx = 256; t = linspace(0,10*pi,nx)'; % Impulse x_impulse = zeros(nx,1); x_impulse(1) = 1; % Max Gain % The maximum gain of a filter will occur when the inputs line up with the % signs of the filter's impulse response. x_max_gain = sign(b)'; x_max_gain = repmat(x_max_gain,ceil(nx/length(b)),1); x_max_gain = x_max_gain(1:nx); % Sums of sines f0=0.1; f1=2; x_sines = sin(2*pi*t*f0) + 0.1*sin(2*pi*t*f1); % Chirp f_chirp = 1/16; % Target frequency x_chirp = sin(pi*f_chirp*t.^2); % Linear chirp x = [x_impulse, x_max_gain, x_sines, x_chirp]; titles = {'Impulse', 'Max gain', 'Sum of sines', 'Chirp'}; y = zeros(size(x)); for i=1:size(x,2) reset = true; y(:,i) = overflow(b,x(:,i),reset); end test_plot(1,titles,t,x,y) end function test_plot(fig,titles,t,x,y1) figure(fig) clf sub_plot = 1; font_size = 10; for i=1:size(x,2) subplot(4,1,sub_plot) sub_plot = sub_plot+1; plot(t,x(:,i),'c',t,y1(:,i),'k') axis('tight') xlabel('t','FontSize',font_size); title(titles{i},'FontSize',font_size); ax = gca; ax.FontSize = 10; end figure(gcf) end
Create a coder.FixptConfig
object, fixptcfg
,
with default settings.
fixptcfg = coder.config('fixpt');
Set the test bench name. In this example, the test bench
function name is overflow_test
.
fixptcfg.TestBenchName = 'overflow_test';
Set the default word length to 16.
fixptcfg.DefaultWordLength = 16;
Enable overflow detection.
fixptcfg.TestNumerics = true; fixptcfg.DetectFixptOverflows = true;
Set the fimath
Product mode
and Sum
mode
to KeepLSB
. These settings models
the behavior of integer operations in the C language.
fixptcfg.fimath = 'fimath( ''RoundingMethod'', ''Floor'', ''OverflowAction'', ''Wrap'', ''ProductMode'', ''KeepLSB'', ''SumMode'', ''KeepLSB'')';
Create a code generation configuration object to generate a standalone C static library.
cfg = coder.config('lib');
Convert the floating-point MATLAB function, overflow
,
to fixed-point C code. You do not need to specify input types for
the codegen
command because it infers the types
from the test file.
codegen -float2fixed fixptcfg -config cfg overflow
The numerics testing phase reports an overflow.
Overflow error in expression 'acc + b( j )*z( k )'. Percentage of Current Range = 104%.
Determine if the addition or the multiplication in this
expression overflowed. Set the fimath
ProductMode
to FullPrecision
so that the multiplication will
not overflow, and then run the codegen
command
again.
fixptcfg.fimath = 'fimath(''RoundingMethod'', ''Floor'', ''OverflowAction'', ''Wrap'', ''ProductMode'', ''FullPrecision'', ''SumMode'', ''KeepLSB'')'; codegen -float2fixed fixptcfg -config cfg overflow
The numerics testing phase still reports an overflow, indicating that it is the addition in the expression that is overflowing.