Propose Fixed-Point Data Types Based on Simulation Ranges
This example shows how to propose fixed-point
data types based on simulation range data using the codegen
function.
Prerequisites
To complete this example, you must install the following products:
MATLAB®
MATLAB Coder™
Fixed-Point Designer™
C compiler
See Supported Compilers.
You can use
mex -setup
to change the default compiler. See Change Default Compiler.
Create a New Folder and Copy Relevant Files
In a local, writable folder, create a function
ex_2ndOrder_filter.m
.function y = ex_2ndOrder_filter(x) %#codegen persistent z if isempty(z) z = zeros(2,1); end % [b,a] = butter(2, 0.25) b = [0.0976310729378175, 0.195262145875635, 0.0976310729378175]; a = [1, -0.942809041582063, 0.3333333333333333]; y = zeros(size(x)); for i = 1:length(x) y(i) = b(1)*x(i) + z(1); z(1) = b(2)*x(i) + z(2) - a(2) * y(i); z(2) = b(3)*x(i) - a(3) * y(i); end end
Create a test file,
ex_2ndOrder_filter_test.m
, to exercise theex_2ndOrder_filter
algorithm.To cover the full intended operating range of the system, the test script runs the
ex_2ndOrder_filter
function with three input signals: chirp, step, and impulse. The script then plots the outputs.% ex_2ndOrder_filter_test % % Define representative inputs N = 256; % Number of points t = linspace(0,1,N); % Time vector from 0 to 1 second f1 = N/2; % Target frequency of chirp set to Nyquist x_chirp = sin(pi*f1*t.^2); % Linear chirp from 0 to Fs/2 Hz in 1 second x_step = ones(1,N); % Step x_impulse = zeros(1,N); % Impulse x_impulse(1) = 1; % Run the function under test x = [x_chirp;x_step;x_impulse]; y = zeros(size(x)); for i = 1:size(x,1) y(i,:) = ex_2ndOrder_filter(x(i,:)); end % Plot the results titles = {'Chirp','Step','Impulse'} clf for i = 1:size(x,1) subplot(size(x,1),1,i) plot(t,x(i,:),t,y(i,:)) title(titles{i}) legend('Input','Output') end xlabel('Time (s)') figure(gcf) disp('Test complete.')
Type | Name | Description |
---|---|---|
Function code | ex_2ndOrder_filter.m | Entry-point MATLAB function |
Test file | ex_2ndOrder_filter_test.m | MATLAB script that tests
ex_2ndOrder_filter.m |
Set Up the Fixed-Point Configuration Object
Create a fixed-point configuration object and configure the test file name.
fixptcfg = coder.config('fixpt'); fixptcfg.TestBenchName = 'ex_2ndOrder_filter_test';
Set Up the C Code Generation Configuration Object
Create a code configuration object to generate a C static library. Enable the code generation report.
cfg = coder.config('lib');
cfg.GenerateReport = true;
Collect Simulation Ranges and Generate Fixed-Point Code
Use the codegen
function to convert the floating-point MATLAB function, ex_2ndOrder_filter
,
to fixed-point C code. Set the default
word length for the fixed-point data types to 16.
fixptcfg.ComputeSimulationRanges = true; fixptcfg.DefaultWordLength = 16; % Derive ranges and generate fixed-point code codegen -float2fixed fixptcfg -config cfg ex_2ndOrder_filter
codegen
analyzes the floating-point
code. Because you did not specify the input types for the ex_2ndOrder_filter
function,
the conversion process infers types by simulating the test file. The
conversion process then derives ranges for variables in the algorithm.
It uses these derived ranges to propose fixed-point types for these
variables. When the conversion is complete, it generates a type proposal
report.
View Range Information
Click the link to the type proposal report for the ex_2ndOrder_filter
function, ex_2ndOrder_filter_report.html
.
The report opens in a web browser.
View Generated Fixed-Point MATLAB Code
codegen
generates a fixed-point version
of the ex_2ndOrder_filter.m
function, ex_2ndOrder_filter_fixpt.m
,
and a wrapper function that calls ex_2ndOrder_filter_fixpt
.
These files are generated in the codegen\ex_2ndOrder_filter\fixpt
folder
in your local working folder.
function y = ex_2ndOrder_filter_fixpt(x) %#codegen fm = get_fimath(); persistent z if isempty(z) z = fi(zeros(2,1),1,16,15,fm); end % [b,a] = butter(2, 0.25) b = fi([0.0976310729378175,0.195262145875635,0.0976310729378175],... 0,16,18,fm); a = fi([1,-0.942809041582063,0.3333333333333333],1,16,14,fm); y = fi(zeros(size(x)),1,16,14,fm); for i=1:length(x) y(i) = b(1)*x(i) + z(1); z(1) = fi_signed(b(2)*x(i) + z(2)) - a(2) * y(i); z(2) = fi_signed(b(3)*x(i)) - a(3) * y(i); end end function y = fi_signed(a) coder.inline('always'); if isfi(a) && ~(issigned(a)) nt = numerictype(a); new_nt = numerictype(1,nt.WordLength + 1,... nt.FractionLength); y = fi(a,new_nt,fimath(a)); else y = a; end end function fm = get_fimath() fm = fimath('RoundingMethod','Floor',... 'OverflowAction','Wrap',... 'ProductMode','FullPrecision',... 'MaxProductWordLength',128,... 'SumMode','FullPrecision',... 'MaxSumWordLength',128); end
View Generated Fixed-Point C Code
To view the code generation report for the C code generation, click the View Report link that follows the type proposal report.
The code generation report opens and displays the generated
code for ex_2ndOrder_filter_fixpt.c
.