probdefault
Likelihood of default for given data set
Description
Examples
Compute Probability for Default Using Credit ScoreCard Data
Create a creditscorecard
object using the CreditCardData.mat
file to load the data
(using a dataset from Refaat 2011).
load CreditCardData sc = creditscorecard(data,'IDVar','CustID')
sc = creditscorecard with properties: GoodLabel: 0 ResponseVar: 'status' WeightsVar: '' VarNames: {'CustID' 'CustAge' 'TmAtAddress' 'ResStatus' 'EmpStatus' 'CustIncome' 'TmWBank' 'OtherCC' 'AMBalance' 'UtilRate' 'status'} NumericPredictors: {'CustAge' 'TmAtAddress' 'CustIncome' 'TmWBank' 'AMBalance' 'UtilRate'} CategoricalPredictors: {'ResStatus' 'EmpStatus' 'OtherCC'} BinMissingData: 0 IDVar: 'CustID' PredictorVars: {'CustAge' 'TmAtAddress' 'ResStatus' 'EmpStatus' 'CustIncome' 'TmWBank' 'OtherCC' 'AMBalance' 'UtilRate'} Data: [1200x11 table]
Perform automatic binning using the default options. By default, autobinning
uses the Monotone
algorithm.
sc = autobinning(sc);
Fit the model.
sc = fitmodel(sc);
1. Adding CustIncome, Deviance = 1490.8527, Chi2Stat = 32.588614, PValue = 1.1387992e-08 2. Adding TmWBank, Deviance = 1467.1415, Chi2Stat = 23.711203, PValue = 1.1192909e-06 3. Adding AMBalance, Deviance = 1455.5715, Chi2Stat = 11.569967, PValue = 0.00067025601 4. Adding EmpStatus, Deviance = 1447.3451, Chi2Stat = 8.2264038, PValue = 0.0041285257 5. Adding CustAge, Deviance = 1441.994, Chi2Stat = 5.3511754, PValue = 0.020708306 6. Adding ResStatus, Deviance = 1437.8756, Chi2Stat = 4.118404, PValue = 0.042419078 7. Adding OtherCC, Deviance = 1433.707, Chi2Stat = 4.1686018, PValue = 0.041179769 Generalized linear regression model: logit(status) ~ 1 + CustAge + ResStatus + EmpStatus + CustIncome + TmWBank + OtherCC + AMBalance Distribution = Binomial Estimated Coefficients: Estimate SE tStat pValue ________ ________ ______ __________ (Intercept) 0.70239 0.064001 10.975 5.0538e-28 CustAge 0.60833 0.24932 2.44 0.014687 ResStatus 1.377 0.65272 2.1097 0.034888 EmpStatus 0.88565 0.293 3.0227 0.0025055 CustIncome 0.70164 0.21844 3.2121 0.0013179 TmWBank 1.1074 0.23271 4.7589 1.9464e-06 OtherCC 1.0883 0.52912 2.0569 0.039696 AMBalance 1.045 0.32214 3.2439 0.0011792 1200 observations, 1192 error degrees of freedom Dispersion: 1 Chi^2-statistic vs. constant model: 89.7, p-value = 1.4e-16
Compute the probability of default.
pd = probdefault(sc); disp(pd(1:15,:))
0.2503 0.1878 0.3173 0.1711 0.1895 0.1307 0.5218 0.2848 0.2612 0.3047 0.3418 0.2237 0.2793 0.3615 0.1653
Compute Probability for Default Using Credit ScoreCard Data When Using the 'BinMissingData'
Option
This example describes both the assignment of points for missing data when the 'BinMissingData'
option is set to true
, and the corresponding computation of probabilities of default.
Predictors that have missing data in the training set have an explicit bin for
<missing>
with corresponding points in the final scorecard. These points are computed from the Weight-of-Evidence (WOE) value for the<missing>
bin and the logistic model coefficients. For scoring purposes, these points are assigned to missing values and to out-of-range values, and the final score is mapped to a probability of default when usingprobdefault
.Predictors with no missing data in the training set have no
<missing>
bin, therefore no WOE can be estimated from the training data. By default, the points for missing and out-of-range values are set toNaN
, and this leads to a score ofNaN
when runningscore
. For predictors that have no explicit<missing>
bin, use the name-value argument'Missing'
informatpoints
to indicate how missing data should be treated for scoring purposes. The final score is then mapped to a probability of default when usingprobdefault
.
Create a creditscorecard
object using the CreditCardData.mat
file to load the dataMissing
with missing values.
load CreditCardData.mat
head(dataMissing,5)
CustID CustAge TmAtAddress ResStatus EmpStatus CustIncome TmWBank OtherCC AMBalance UtilRate status ______ _______ ___________ ___________ _________ __________ _______ _______ _________ ________ ______ 1 53 62 <undefined> Unknown 50000 55 Yes 1055.9 0.22 0 2 61 22 Home Owner Employed 52000 25 Yes 1161.6 0.24 0 3 47 30 Tenant Employed 37000 61 No 877.23 0.29 0 4 NaN 75 Home Owner Employed 53000 20 Yes 157.37 0.08 0 5 68 56 Home Owner Employed 53000 14 Yes 561.84 0.11 0
Use creditscorecard
with the name-value argument 'BinMissingData'
set to true
to bin the missing numeric or categorical data in a separate bin. Apply automatic binning.
sc = creditscorecard(dataMissing,'IDVar','CustID','BinMissingData',true); sc = autobinning(sc); disp(sc)
creditscorecard with properties: GoodLabel: 0 ResponseVar: 'status' WeightsVar: '' VarNames: {'CustID' 'CustAge' 'TmAtAddress' 'ResStatus' 'EmpStatus' 'CustIncome' 'TmWBank' 'OtherCC' 'AMBalance' 'UtilRate' 'status'} NumericPredictors: {'CustAge' 'TmAtAddress' 'CustIncome' 'TmWBank' 'AMBalance' 'UtilRate'} CategoricalPredictors: {'ResStatus' 'EmpStatus' 'OtherCC'} BinMissingData: 1 IDVar: 'CustID' PredictorVars: {'CustAge' 'TmAtAddress' 'ResStatus' 'EmpStatus' 'CustIncome' 'TmWBank' 'OtherCC' 'AMBalance' 'UtilRate'} Data: [1200x11 table]
Set a minimum value of 0
for CustAge
and CustIncome
. With this, any negative age or income information becomes invalid or "out-of-range". For scoring and probability of default computations, out-of-range values are given the same points as missing values.
sc = modifybins(sc,'CustAge','MinValue',0); sc = modifybins(sc,'CustIncome','MinValue',0);
Display bin information for numeric data for 'CustAge'
that includes missing data in a separate bin labelled <missing>
.
bi = bininfo(sc,'CustAge');
disp(bi)
Bin Good Bad Odds WOE InfoValue _____________ ____ ___ ______ ________ __________ {'[0,33)' } 69 52 1.3269 -0.42156 0.018993 {'[33,37)' } 63 45 1.4 -0.36795 0.012839 {'[37,40)' } 72 47 1.5319 -0.2779 0.0079824 {'[40,46)' } 172 89 1.9326 -0.04556 0.0004549 {'[46,48)' } 59 25 2.36 0.15424 0.0016199 {'[48,51)' } 99 41 2.4146 0.17713 0.0035449 {'[51,58)' } 157 62 2.5323 0.22469 0.0088407 {'[58,Inf]' } 93 25 3.72 0.60931 0.032198 {'<missing>'} 19 11 1.7273 -0.15787 0.00063885 {'Totals' } 803 397 2.0227 NaN 0.087112
Display bin information for categorical data for 'ResStatus'
that includes missing data in a separate bin labelled <missing>
.
bi = bininfo(sc,'ResStatus');
disp(bi)
Bin Good Bad Odds WOE InfoValue ______________ ____ ___ ______ _________ __________ {'Tenant' } 296 161 1.8385 -0.095463 0.0035249 {'Home Owner'} 352 171 2.0585 0.017549 0.00013382 {'Other' } 128 52 2.4615 0.19637 0.0055808 {'<missing>' } 27 13 2.0769 0.026469 2.3248e-05 {'Totals' } 803 397 2.0227 NaN 0.0092627
For the 'CustAge'
and 'ResStatus'
predictors, there is missing data (NaN
s and <undefined>
) in the training data, and the binning process estimates a WOE value of -0.15787 and 0.026469 respectively for missing data in these predictors, as shown above.
For EmpStatus
and CustIncome
there is no explicit bin for missing values because the training data has no missing values for these predictors.
bi = bininfo(sc,'EmpStatus');
disp(bi)
Bin Good Bad Odds WOE InfoValue ____________ ____ ___ ______ ________ _________ {'Unknown' } 396 239 1.6569 -0.19947 0.021715 {'Employed'} 407 158 2.5759 0.2418 0.026323 {'Totals' } 803 397 2.0227 NaN 0.048038
bi = bininfo(sc,'CustIncome');
disp(bi)
Bin Good Bad Odds WOE InfoValue _________________ ____ ___ _______ _________ __________ {'[0,29000)' } 53 58 0.91379 -0.79457 0.06364 {'[29000,33000)'} 74 49 1.5102 -0.29217 0.0091366 {'[33000,35000)'} 68 36 1.8889 -0.06843 0.00041042 {'[35000,40000)'} 193 98 1.9694 -0.026696 0.00017359 {'[40000,42000)'} 68 34 2 -0.011271 1.0819e-05 {'[42000,47000)'} 164 66 2.4848 0.20579 0.0078175 {'[47000,Inf]' } 183 56 3.2679 0.47972 0.041657 {'Totals' } 803 397 2.0227 NaN 0.12285
Use fitmodel
to fit a logistic regression model using Weight of Evidence (WOE) data. fitmodel
internally transforms all the predictor variables into WOE values, using the bins found with the automatic binning process. fitmodel
then fits a logistic regression model using a stepwise method (by default). For predictors that have missing data, there is an explicit <missing>
bin, with a corresponding WOE value computed from the data. When using fitmodel
, the corresponding WOE value for the <missing> bin is applied when performing the WOE transformation.
[sc,mdl] = fitmodel(sc);
1. Adding CustIncome, Deviance = 1490.8527, Chi2Stat = 32.588614, PValue = 1.1387992e-08 2. Adding TmWBank, Deviance = 1467.1415, Chi2Stat = 23.711203, PValue = 1.1192909e-06 3. Adding AMBalance, Deviance = 1455.5715, Chi2Stat = 11.569967, PValue = 0.00067025601 4. Adding EmpStatus, Deviance = 1447.3451, Chi2Stat = 8.2264038, PValue = 0.0041285257 5. Adding CustAge, Deviance = 1442.8477, Chi2Stat = 4.4974731, PValue = 0.033944979 6. Adding ResStatus, Deviance = 1438.9783, Chi2Stat = 3.86941, PValue = 0.049173805 7. Adding OtherCC, Deviance = 1434.9751, Chi2Stat = 4.0031966, PValue = 0.045414057 Generalized linear regression model: logit(status) ~ 1 + CustAge + ResStatus + EmpStatus + CustIncome + TmWBank + OtherCC + AMBalance Distribution = Binomial Estimated Coefficients: Estimate SE tStat pValue ________ ________ ______ __________ (Intercept) 0.70229 0.063959 10.98 4.7498e-28 CustAge 0.57421 0.25708 2.2335 0.025513 ResStatus 1.3629 0.66952 2.0356 0.04179 EmpStatus 0.88373 0.2929 3.0172 0.002551 CustIncome 0.73535 0.2159 3.406 0.00065929 TmWBank 1.1065 0.23267 4.7556 1.9783e-06 OtherCC 1.0648 0.52826 2.0156 0.043841 AMBalance 1.0446 0.32197 3.2443 0.0011775 1200 observations, 1192 error degrees of freedom Dispersion: 1 Chi^2-statistic vs. constant model: 88.5, p-value = 2.55e-16
Scale the scorecard points by the "points, odds, and points to double the odds (PDO)" method using the 'PointsOddsAndPDO'
argument of formatpoints
. Suppose that you want a score of 500 points to have odds of 2 (twice as likely to be good than to be bad) and that the odds double every 50 points (so that 550 points would have odds of 4).
Display the scorecard showing the scaled points for predictors retained in the fitting model.
sc = formatpoints(sc,'PointsOddsAndPDO',[500 2 50]);
PointsInfo = displaypoints(sc)
PointsInfo=38×3 table
Predictors Bin Points
_____________ ______________ ______
{'CustAge' } {'[0,33)' } 54.062
{'CustAge' } {'[33,37)' } 56.282
{'CustAge' } {'[37,40)' } 60.012
{'CustAge' } {'[40,46)' } 69.636
{'CustAge' } {'[46,48)' } 77.912
{'CustAge' } {'[48,51)' } 78.86
{'CustAge' } {'[51,58)' } 80.83
{'CustAge' } {'[58,Inf]' } 96.76
{'CustAge' } {'<missing>' } 64.984
{'ResStatus'} {'Tenant' } 62.138
{'ResStatus'} {'Home Owner'} 73.248
{'ResStatus'} {'Other' } 90.828
{'ResStatus'} {'<missing>' } 74.125
{'EmpStatus'} {'Unknown' } 58.807
{'EmpStatus'} {'Employed' } 86.937
{'EmpStatus'} {'<missing>' } NaN
⋮
Notice that points for the <missing>
bin for CustAge
and ResStatus
are explicitly shown (as 64.9836
and 74.1250
, respectively). These points are computed from the WOE value for the <missing> bin and the logistic model coefficients.
For predictors that have no missing data in the training set, there is no explicit <missing> bin. By default the points are set to NaN
for missing data, and they lead to a score of NaN
when running score
. For predictors that have no explicit <missing> bin, use the name-value argument 'Missing'
in formatpoints
to indicate how missing data should be treated for scoring purposes.
For the purpose of illustration, take a few rows from the original data as test data and introduce some missing data. Also introduce some invalid, or out-of-range, values. For numeric data, values below the minimum (or above the maximum) allowed are considered invalid, such as a negative value for age (recall 'MinValue'
was earlier set to 0 for CustAge
and CustIncome
). For categorical data, invalid values are categories not explicitly included in the scorecard, for example, a residential status not previously mapped to scorecard categories, such as "House", or a meaningless string such as "abc123".
tdata = dataMissing(11:18,mdl.PredictorNames); % Keep only the predictors retained in the model % Set some missing values tdata.CustAge(1) = NaN; tdata.ResStatus(2) = missing; tdata.EmpStatus(3) = missing; tdata.CustIncome(4) = NaN; % Set some invalid values tdata.CustAge(5) = -100; tdata.ResStatus(6) = 'House'; tdata.EmpStatus(7) = 'Freelancer'; tdata.CustIncome(8) = -1; disp(tdata)
CustAge ResStatus EmpStatus CustIncome TmWBank OtherCC AMBalance _______ ___________ ___________ __________ _______ _______ _________ NaN Tenant Unknown 34000 44 Yes 119.8 48 <undefined> Unknown 44000 14 Yes 403.62 65 Home Owner <undefined> 48000 6 No 111.88 44 Other Unknown NaN 35 No 436.41 -100 Other Employed 46000 16 Yes 162.21 33 House Employed 36000 36 Yes 845.02 39 Tenant Freelancer 34000 40 Yes 756.26 24 Home Owner Employed -1 19 Yes 449.61
Score the new data and see how points are assigned for missing CustAge
and ResStatus
, because we have an explicit bin with points for <missing>
. However, for EmpStatus
and CustIncome
the score
function sets the points to NaN
. The corresponding probabilities of default are also set to NaN
.
[Scores,Points] = score(sc,tdata); disp(Scores)
481.2231 520.8353 NaN NaN 551.7922 487.9588 NaN NaN
disp(Points)
CustAge ResStatus EmpStatus CustIncome TmWBank OtherCC AMBalance _______ _________ _________ __________ _______ _______ _________ 64.984 62.138 58.807 67.893 61.858 75.622 89.922 78.86 74.125 58.807 82.439 61.061 75.622 89.922 96.76 73.248 NaN 96.969 51.132 50.914 89.922 69.636 90.828 58.807 NaN 61.858 50.914 89.922 64.984 90.828 86.937 82.439 61.061 75.622 89.922 56.282 74.125 86.937 70.107 61.858 75.622 63.028 60.012 62.138 NaN 67.893 61.858 75.622 63.028 54.062 73.248 86.937 NaN 61.061 75.622 89.922
pd = probdefault(sc,tdata); disp(pd)
0.3934 0.2725 NaN NaN 0.1961 0.3714 NaN NaN
Use the name-value argument 'Missing'
in formatpoints
to choose how to assign points to missing values for predictors that do not have an explicit <missing>
bin. In this example, use the 'MinPoints'
option for the 'Missing'
argument. The minimum points for EmpStatus
in the scorecard displayed above are 58.8072
, and for CustIncome
the minimum points are 29.3753
. All rows now have a score and a corresponding probability of default.
sc = formatpoints(sc,'Missing','MinPoints'); [Scores,Points] = score(sc,tdata); disp(Scores)
481.2231 520.8353 517.7532 451.3405 551.7922 487.9588 449.3577 470.2267
disp(Points)
CustAge ResStatus EmpStatus CustIncome TmWBank OtherCC AMBalance _______ _________ _________ __________ _______ _______ _________ 64.984 62.138 58.807 67.893 61.858 75.622 89.922 78.86 74.125 58.807 82.439 61.061 75.622 89.922 96.76 73.248 58.807 96.969 51.132 50.914 89.922 69.636 90.828 58.807 29.375 61.858 50.914 89.922 64.984 90.828 86.937 82.439 61.061 75.622 89.922 56.282 74.125 86.937 70.107 61.858 75.622 63.028 60.012 62.138 58.807 67.893 61.858 75.622 63.028 54.062 73.248 86.937 29.375 61.061 75.622 89.922
pd = probdefault(sc,tdata); disp(pd)
0.3934 0.2725 0.2810 0.4954 0.1961 0.3714 0.5022 0.4304
Input Arguments
sc
— Credit scorecard model
creditscorecard
object
Credit scorecard model, specified as a
creditscorecard
object. To create this object,
use creditscorecard
.
data
— Dataset to apply probability of default rules
table
(Optional) Dataset to apply probability of default rules, specified as
a MATLAB® table, where each row corresponds to individual
observations. The data must contain columns for each of the predictors
in the creditscorecard
object.
Data Types: table
Output Arguments
pd
— Probability of default
array
Probability of default, returned as a
NumObs
-by-1
numerical array of
default probabilities.
More About
Default Probability
After the unscaled scores are computed (see Algorithms for Computing and Scaling Scores), the probability of the points being “Good” is represented by the following formula:
ProbGood = 1./(1 + exp(-UnscaledScores))
Thus, the probability of default is
pd = 1 - ProbGood
References
[1] Refaat, M. Credit Risk Scorecards: Development and Implementation Using SAS. lulu.com, 2011.
Version History
Introduced in R2015a
See Also
creditscorecard
| bininfo
| predictorinfo
| modifypredictor
| modifybins
| bindata
| plotbins
| fitmodel
| displaypoints
| formatpoints
| score
| setmodel
| validatemodel
| table
MATLAB Command
You clicked a link that corresponds to this MATLAB command:
Run the command by entering it in the MATLAB Command Window. Web browsers do not support MATLAB commands.
Select a Web Site
Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: .
You can also select a web site from the following list
How to Get Best Site Performance
Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.
Americas
- América Latina (Español)
- Canada (English)
- United States (English)
Europe
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)
Asia Pacific
- Australia (English)
- India (English)
- New Zealand (English)
- 中国
- 日本Japanese (日本語)
- 한국Korean (한국어)