transprobbytotals
Estimate transition probabilities using totals
structure
input
Syntax
Description
[
estimates transition probabilities using a transMat
,sampleTotals
] = transprobbytotals(totals
)totals
structure
input. transprobbytotals
is useful for removing outlier
information, obtaining bootstrapped confidence intervals, or computing
transition probability estimates for different periodicity parameters (1-year
transitions, 2-year transitions, and so on) efficiently.
[
adds optional name-value pair arguments. transMat
,sampleTotals
] = transprobbytotals(___,Name,Value
)
Examples
Estimate Transition Probabilities Using a totals Structure Input
Use historical credit rating input data from Data_TransProb.mat
and transprob
to generate input for transprobbytotals
:
load Data_TransProb % Call TRANSPROB with three output arguments [transMat, sampleTotals, idTotals] = transprob(data); transMat
transMat = 8×8
93.1170 5.8428 0.8232 0.1763 0.0376 0.0012 0.0001 0.0017
1.6166 93.1518 4.3632 0.6602 0.1626 0.0055 0.0004 0.0396
0.1237 2.9003 92.2197 4.0756 0.5365 0.0661 0.0028 0.0753
0.0236 0.2312 5.0059 90.1846 3.7979 0.4733 0.0642 0.2193
0.0216 0.1134 0.6357 5.7960 88.9866 3.4497 0.2919 0.7050
0.0010 0.0062 0.1081 0.8697 7.3366 86.7215 2.5169 2.4399
0.0002 0.0011 0.0120 0.2582 1.4294 4.2898 81.2927 12.7167
0 0 0 0 0 0 0 100.0000
Suppose companies 4 and 27 are outliers and you want to remove them from the pre-processed idTotals
struct array and estimate the new transition probabilities.
idTotals([4 27]) = []; [transMat1, sampleTotals1] = transprobbytotals(idTotals); transMat1
transMat1 = 8×8
93.1172 5.8427 0.8231 0.1763 0.0377 0.0012 0.0001 0.0017
1.6213 93.1501 4.3584 0.6614 0.1631 0.0055 0.0004 0.0397
0.1239 2.9027 92.2297 4.0628 0.5367 0.0661 0.0028 0.0753
0.0236 0.2313 5.0070 90.1825 3.7986 0.4734 0.0642 0.2193
0.0216 0.1134 0.6357 5.7959 88.9866 3.4497 0.2920 0.7050
0.0010 0.0062 0.1081 0.8697 7.3367 86.7217 2.5171 2.4395
0.0002 0.0011 0.0120 0.2591 1.4340 4.3034 81.3027 12.6875
0 0 0 0 0 0 0 100.0000
Obtain the 1-year, 2-year, 3-year, 4-year, and 5-year default probabilities, without the outlier information (i.e., using sampleTotals1
).
DefProb = zeros(7,5); for t = 1:5 transMatTemp = transprobbytotals(sampleTotals1,'transInterval',t); DefProb(:,t) = transMatTemp(1:7,8); end DefProb
DefProb = 7×5
0.0017 0.0070 0.0159 0.0285 0.0450
0.0397 0.0828 0.1299 0.1813 0.2377
0.0753 0.1606 0.2567 0.3640 0.4831
0.2193 0.4675 0.7430 1.0445 1.3700
0.7050 1.4668 2.2759 3.1232 4.0000
2.4395 4.9282 7.4071 9.8351 12.1847
12.6875 23.1184 31.7177 38.8282 44.7266
Input Arguments
totals
— Total transitions observed
structure | struct array
Total transitions observed, specified as a structure, or a struct array of length nTotals, with fields:
totalsVec
— A sparse vector of size1
-by-nRatings1
.totalsMat
— A sparse matrix of sizenRatings1
-by-nRatings2
withnRatings1
≤nRatings2
.algorithm
— A character vector with values'duration'
or'cohort'
.
For the 'duration'
algorithm,
totalsMat
(i,j)
contains the total transitions observed out of rating
i into rating j (all the
diagonal elements are 0). The total time spent on rating
i is stored in
totalsVec
(i). For example, you
have three rating categories, Investment Grade (IG
),
Speculative Grade (SG
), and Default
(D
), and the following
information:
Total time spent IG SG D in rating: 4859.09 1503.36 1162.05 Transitions IG SG D out of (row) IG 0 89 7 into (column): SG 202 0 32 D 0 0 0
totals.totalsVec = [4859.09 1503.36 1162.05] totals.totalsMat = [ 0 89 7 202 0 32 0 0 0] totals.algorithm = 'duration'
For the 'cohort'
algorithm,
totalsMat
(i,j)
contains the total transitions observed from rating i
to rating j, and
totalsVec
(i) is the initial
count in rating i. For example, given the following
information:
Initial count IG SG D in rating: 4808 1572 1145 Transitions IG SG D from (row) IG 4721 80 7 to (column): SG 193 1347 32 D 0 0 1145
totals.totalsVec = [4808 1572 1145] totals.totalsMat = [4721 80 7 193 1347 32 0 0 1145 totals.algorithm = 'cohort'
Common totals structures are the optional output arguments from
transprob
:
sampleTotals
— A single structure summarizing the totals information for the whole dataset.idTotals
— A struct array with the totals information at the ID level.
Data Types: struct
| structure
Name-Value Arguments
Specify optional pairs of arguments as
Name1=Value1,...,NameN=ValueN
, where Name
is
the argument name and Value
is the corresponding value.
Name-value arguments must appear after other arguments, but the order of the
pairs does not matter.
Before R2021a, use commas to separate each name and value, and enclose
Name
in quotes.
Example: transMat =
transprobbytotals(Totals1,'transInterval',5)
snapsPerYear
— Number of credit-rating snapshots per year
1
(default) | numeric values are 1
, 2
,
3
, 4
,
6
, or 12
Number of credit-rating snapshots per year to be considered for
the estimation, specified as the comma-separated pair consisting of
'snapsPerYear'
and a numeric value of
1
, 2
, 3
,
4
, 6
, or
12
.
Note
This parameter is only used with the
'cohort'
algorithm
.
Data Types: double
transInterval
— Length of the transition interval in years
1
(one year transition
probability) (default) | numeric
Length of the transition interval, in years, specified as the
comma-separated pair consisting of 'transInterval'
and a numeric value.
Data Types: double
Output Arguments
transMat
— Matrix of transition probabilities in percent
matrix
Matrix of transition probabilities in percent, returned as a
nRatings1
-by-nRatings2
transition matrix.
sampleTotals
— Structure with sample totals
structure
Structure with sample totals, returned with fields:
totalsVec
— A vector of size1
-by-nRatings1
.totalsMat
— A matrix of sizenRatings1
-by-nRatings2
withnRatings1
≤nRatings2
.algorithm
— A character vector with values'duration'
or'cohort'
.
If totals
is a struct array,
sampleTotals
contains the aggregated information.
That is, sampleTotals.totalsVec
is the sum of
totals
(k).totalsVec
over all k, and similarly for
totalsMat
. When totals
is
itself a single structure, sampleTotals
and
totals
are the same.
More About
Cohort Estimation
The cohort algorithm estimates the transition probabilities based on a sequence of snapshots of credit ratings at regularly spaced points in time.
If the credit rating of a company changes twice between two snapshot dates, the intermediate rating is overlooked and only the initial and final ratings influence the estimates.
Duration Estimation
Unlike the cohort method, the duration algorithm estimates the transition probabilities based on the full credit ratings history, looking at the exact dates on which the credit rating migrations occur.
There is no concept of snapshots in this method, and all credit rating migrations influence the estimates, even when a company's rating changes twice within a short time.
References
[1] Hanson, S., T. Schuermann. "Confidence Intervals for Probabilities of Default." Journal of Banking & Finance. Vol. 30(8), Elsevier, August 2006, pp. 2281–2301.
[2] Löffler, G., P. N. Posch. Credit Risk Modeling Using Excel and VBA. West Sussex, England: Wiley Finance, 2007.
[3] Schuermann, T. "Credit Migration Matrices." in E. Melnick, B. Everitt (eds.), Encyclopedia of Quantitative Risk Analysis and Assessment. Wiley, 2008.
Version History
Introduced in R2010b
MATLAB Command
You clicked a link that corresponds to this MATLAB command:
Run the command by entering it in the MATLAB Command Window. Web browsers do not support MATLAB commands.
Select a Web Site
Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: .
You can also select a web site from the following list:
How to Get Best Site Performance
Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.
Americas
- América Latina (Español)
- Canada (English)
- United States (English)
Europe
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)