# cordicsinhcosh

## Description

`[`

returns the hyperbolic sine (sinh) `S`

,`C`

] = cordicsinhcosh(`X`

)`S`

and hyperbolic cosine (cosh)
`C`

of the elements in `X`

using a CORDIC-based
approximation. The `cordicsinhcosh`

function operates element-wise on
arrays. All angles are in radians. The function uses the maximum number of CORDIC iterations
for the numeric type of `X`

.

## Examples

## Input Arguments

## Output Arguments

## Limitations

The

`cordicsinhcosh`

function returns an error if`X`

is outside the domain of convergence for the CORDIC hyperbolic sine and cosine kernel. The domain of convergence is a function of the numeric type of`X`

and the maximum CORDIC shift value`n`

. The domain of convergence converges to around`[-1.1182, +1.1182]`

. You can use the`fixed.cordic.hyperbolic.domainOfConvergence`

function to compute the domain of convergence for a particular`X`

and`n`

.

## More About

## References

[1] Volder, Jack E. “The CORDIC
Trigonometric Computing Technique.” *IRE Transactions on Electronic
Computers*. EC-8, no. 3 (Sept. 1959): 330–334.

[2] Andraka, Ray. “A Survey of
CORDIC Algorithm for FPGA Based Computers.” In *Proceedings of the 1998
ACM/SIGDA Sixth International Symposium on Field Programmable Gate Arrays*,
191–200. https://dl.acm.org/doi/10.1145/275107.275139.

[3] Walther, J.S. “A Unified
Algorithm for Elementary Functions.” In *Proceedings of the May 18–20, 1971
Spring Joint Computer Conference*, 379–386.
https://dl.acm.org/doi/10.1145/1478786.1478840.

[4] Schelin, Charles W.
“Calculator Function Approximation.” *The American Mathematical
Monthly*, no. 5 (May 1983): 317–325.
https://doi.org/10.2307/2975781.

## Extended Capabilities

## Version History

**Introduced in R2023b**

## See Also

`fixed.cordic.hyperbolic.domainOfConvergence`

| `cordictanh`

| `cordicsincos`

| `sinh`

| `cosh`