ordeig
Eigenvalues of quasitriangular matrices
Syntax
E = ordeig(T)
E = ordeig(AA,BB)
Description
E = ordeig(T) takes a quasitriangular
Schur matrix T, typically produced by schur,
and returns the vector E of eigenvalues in their
order of appearance down the diagonal of T.
E = ordeig(AA,BB) takes a
quasitriangular matrix pair AA and BB,
typically produced by qz, and returns the generalized
eigenvalues in their order of appearance down the diagonal of AA-λ*BB.
ordeig is an order-preserving version of eig for
use with ordschur and ordqz.
It is also faster than eig for quasitriangular
matrices.
Examples
Example 1
T=diag([1 -1 3 -5 2]);
ordeig(T) returns the eigenvalues of T in
the same order they appear on the diagonal.
ordeig(T)
ans =
1
-1
3
-5
2eig(T), on the other hand, returns the eigenvalues
in order of increasing magnitude.
eig(T)
ans =
-5
-1
1
2
3Example 2
A = rand(10);
[U, T] = schur(A);
abs(ordeig(T))
ans =
5.3786
0.7564
0.7564
0.7802
0.7080
0.7080
0.5855
0.5855
0.1445
0.0812
% Move eigenvalues with magnitude < 0.5 to the
% upper-left corner of T.
[U,T] = ordschur(U,T,abs(E)<0.5);
abs(ordeig(T))
ans =
0.1445
0.0812
5.3786
0.7564
0.7564
0.7802
0.7080
0.7080
0.5855
0.5855Extended Capabilities
Version History
Introduced before R2006a