Rectangular, Triangular, Trapezoidal, and Harmonic Loads
Model rectangular, triangular, trapezoidal, and harmonic loads by creating the helper functions. By using different parameters, such as start, rise, fall, and end times and also frequency and phase, you can model a variety of loads.
Rectangular, Triangular, and Trapezoidal Pulses
Model a trapezoidal pulse load by specifying its magnitude and a set of times.
Define a trapezoidal pulse function, trapezoidalLoad
, to model a
trapezoidal load. This function accepts the load magnitude, the
location
and state
structure arrays, and the
function specifying the pulse parameters that define the start, rise, fall, and end
times. Because the function depends on time, it must return a matrix of
NaN
of the correct size when state.time
is
NaN
. Solvers check whether a problem is nonlinear or
time-dependent by passing NaN
state values and looking for returned
NaN
values.
function Tn = trapezoidalLoad(load,location,state,T) if isnan(state.time) Tn = NaN*(location.nx); return end if isa(load,"function_handle") load = load(location,state); else load = load(:); end % Four time-points that define a trapezoidal pulse T1 = T(1); % Start time T2 = T(2); % Rise time T3 = T(3); % Fall time T4 = T(4); % End time % Determine multiplicative factor for the specified time TnTrap = max([ min([(state.time - T1)/(T2-T1), ... 1, ... (T4 - state.time)/(T4-T3)]), ... 0]); Tn = load.* TnTrap; end
The setUpTrapezoid
helper function accepts the name-value arguments
StartTime
, RiseTime
,
FallTime
, and EndTime
and processes these
parameters for use in the trapezoidalLoad
function. Pass the output
of this function as the last argument of trapezoidalLoad
. The default
StartTime
, RiseTime
, and
FallTime
values are 0
, while the default
EndTime
value is Inf
.
function T = setUpTrapezoid(opts) arguments opts.StartTime double {mustBeScalarOrEmpty,mustBeReal} = [] opts.RiseTime double {mustBeScalarOrEmpty,mustBeReal} = [] opts.FallTime double {mustBeScalarOrEmpty,mustBeReal} = [] opts.EndTime double {mustBeScalarOrEmpty,mustBeReal} = [] end if isempty(opts.StartTime) opts.StartTime = 0; end if isempty(opts.RiseTime) opts.RiseTime = 0; end if isempty(opts.FallTime) opts.FallTime = 0; end if isempty(opts.EndTime) && (opts.FallTime ~= 0) opts.EndTime = opts.StartTime + opts.RiseTime + opts.FallTime; elseif isempty(opts.EndTime) && (opts.FallTime == 0) opts.EndTime = Inf; end T = [opts.StartTime; opts.StartTime + opts.RiseTime; opts.EndTime - opts.FallTime; opts.EndTime]; end
As an example, apply a trapezoidal pressure load on face 1 by using these functions.
load = 5e6; T = setUpTrapezoid(StartTime=1, ... RiseTime=0.5, ... FallTime=0.5, ... EndTime=3); pressurePulse = @(location,state) ... trapezoidalLoad(load,location,state,T); model.FaceLoad(1) = faceLoad(Pressure=pressurePulse);
For rectangular and triangular pulses, use the same helper functions and specify start, rise, fall, and end times as follows:
For a rectangular pulse, specify the start and end times.
For a triangular pulse, specify the start time and any two of these times: rise time, fall time, and end time. You also can specify all four times, but they must be consistent.
Harmonic Load
Model a harmonic load by specifying its magnitude, frequency, and phase.
Define a sinusoidal load function, sinusoidalLoad
, to model a
harmonic load. This function accepts the load magnitude (amplitude), the
location
and state
structure arrays,
frequency, and phase. Because the function depends on time, it must return a matrix of
NaN
of the correct size when state.time
is
NaN
. Solvers check whether a problem is nonlinear or
time-dependent by passing NaN
state values and looking for returned
NaN
values.
function Tn = sinusoidalLoad(load,location,state,Frequency,Phase) if isnan(state.time) Tn = NaN*(location.nx); return end if isa(load,"function_handle") load = load(location,state); else load = load(:); end % Transient model excited with harmonic load Tn = load.*sin(Frequency.*state.time + Phase); end
As an example, apply a sinusoidal pressure load on face 1 by using the
sinusoidalLoad
function.
Pressure = 5e7;
Frequency = 25;
Phase = 0;
pressurePulse = @(location,state) ...
sinusoidalLoad(Pressure,location,state,Frequency,Phase);
model.FaceLoad(1) = faceLoad(Pressure=pressurePulse);
You can also define a sinusoidal load function depending on all three coordinates.
function Tn = sinusoidalLoad(load,location,state,Frequency,Phase) if isnan(state.time) normal = [location.nx location.ny]; if isfield(location,"nz") normal = [normal location.nz]; end Tn = NaN*normal; return end if isa(load,"function_handle") load = load(location,state); else load = load(:); end % Transient model excited with harmonic load Tn = load.*sin(Frequency.*state.time + Phase); end