Figure 's issue

1 view (last 30 days)
M
M on 12 Sep 2022
Edited: Torsten on 13 Sep 2022
Hi everyone. I wrote the code below for plotting a 2d figure (ct-h) but it doesn't work; I mean it doesn't show any figure. Could you please tell me what is the problem, and how can I solve it?
Thanks in advance for any help.
vplc=0.16;
delta=0.1;
Ktau=0.045;
Kc=0.1;
K=0.0075;
Kp=0.15;
gamma=5.5;
kb=0.4;
vss=0.044;
alpha0=delta*6.81e-6/(0.002);
alpha1=delta*2.27e-5/(0.002);
Ke=7;
Vs=0.002;
ks=0.1;
Kf=0.18;
kplc=0.055;
ki=2;
[ct]=meshgrid(0.0001:0.05:30);
x=(((2.*Vs.*K.*gamma.^2.*ct.^2)./(vss))+((2.*alpha0.*ks.^2)./(vss))+((2.*Ke.^4.*ks.^2.*alpha1)./(vss.*(Ke.^4+(gamma.*ct).^4))));
p=(vplc./ki).*(x./((kplc).^2+x));
A=(-(vss.*x)./(ks.^2))+((Vs.*K.*gamma.^2.*ct.^2)./(ks.^2))+alpha0+alpha1.*((Ke.^4)./(Ke.^4+(gamma.*ct).^4));
h=-(0.4.*A.*((Kc.^4).*(Kp.^2))./((p.^2.*x.^2.*gamma.*ct.*Kf)));
plot(ct,h);

Accepted Answer

Walter Roberson
Walter Roberson on 12 Sep 2022
Edited: Walter Roberson on 12 Sep 2022
[ct]=meshgrid(0.0001:0.05:30);
is treated the same way as if you had used
[ct, ~]=meshgrid(0.0001:0.05:30, 0.0001:0.05:30);
It creates a 600 x 600 grid that is just a lot of repeats of the same values. So you end up plotting 600 lines.
I suggest you use semilogy instead of plot()
  6 Comments
Torsten
Torsten on 12 Sep 2022
Edited: Torsten on 13 Sep 2022
With "plot(ct,h)" also worked and gave me the figure that I expected
I only see one small jump at 0 and everything else on the zero level
vplc=0.16;
delta=0.1;
Ktau=0.045;
Kc=0.1;
K=0.0075;
Kp=0.15;
gamma=5.5;
kb=0.4;
vss=0.044;
alpha0=delta*6.81e-6/(0.002);
alpha1=delta*2.27e-5/(0.002);
Ke=7;
Vs=0.002;
ks=0.1;
Kf=0.18;
kplc=0.055;
ki=2;
ct=0.0001:0.05:2;
x=(((2.*Vs.*K.*gamma.^2.*ct.^2)./(vss))+((2.*alpha0.*ks.^2)./(vss))+((2.*Ke.^4.*ks.^2.*alpha1)./(vss.*(Ke.^4+(gamma.*ct).^4))));
p=(vplc./ki).*(x./((kplc).^2+x));
A=(-(vss.*x)./(ks.^2))+((Vs.*K.*gamma.^2.*ct.^2)./(ks.^2))+alpha0+alpha1.*((Ke.^4)./(Ke.^4+(gamma.*ct).^4));
h=-(0.4.*A.*((Kc.^4).*(Kp.^2))./((p.^2.*x.^2.*gamma.*ct.*Kf)));
plot(ct,h);
whereas the semilogy option gives a good resolution of the different scales:
vplc=0.16;
delta=0.1;
Ktau=0.045;
Kc=0.1;
K=0.0075;
Kp=0.15;
gamma=5.5;
kb=0.4;
vss=0.044;
alpha0=delta*6.81e-6/(0.002);
alpha1=delta*2.27e-5/(0.002);
Ke=7;
Vs=0.002;
ks=0.1;
Kf=0.18;
kplc=0.055;
ki=2;
ct=0.0001:0.05:2;
x=(((2.*Vs.*K.*gamma.^2.*ct.^2)./(vss))+((2.*alpha0.*ks.^2)./(vss))+((2.*Ke.^4.*ks.^2.*alpha1)./(vss.*(Ke.^4+(gamma.*ct).^4))));
p=(vplc./ki).*(x./((kplc).^2+x));
A=(-(vss.*x)./(ks.^2))+((Vs.*K.*gamma.^2.*ct.^2)./(ks.^2))+alpha0+alpha1.*((Ke.^4)./(Ke.^4+(gamma.*ct).^4));
h=-(0.4.*A.*((Kc.^4).*(Kp.^2))./((p.^2.*x.^2.*gamma.*ct.*Kf)));
semilogy(ct,h);
M
M on 12 Sep 2022
Yeah, that's true, and I understood what you said, but the point is that only this part ct=[0,2] and h=[0,1] is important for me, and with "plot", it seems to work better (at least for this case).

Sign in to comment.

More Answers (0)

Categories

Find more on Graphics Objects in Help Center and File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!