# How to add to an image white Gaussian noise of zero mean and standard deviation of certain gray levels?

12 views (last 30 days)

Show older comments

Mohsin Shah
on 12 Jul 2018

Commented: Image Analyst
on 13 Dec 2019

##### 0 Comments

### Accepted Answer

Image Analyst
on 12 Jul 2018

##### 5 Comments

Image Analyst
on 13 Jul 2018

Edited: Image Analyst
on 13 Dec 2019

OK, I sense that you tried but couldn't do it, so here is a full demo:

clc; % Clear the command window.

close all; % Close all figures (except those of imtool.)

clear; % Erase all existing variables. Or clearvars if you want.

workspace; % Make sure the workspace panel is showing.

format long g;

format compact;

fontSize = 20;

% Make a gray scale image of brightness 128 gray levels.

grayImage = 128 * ones(480, 640, 'uint8');

% Make a noise image of standard deviation 64 gray levels.

noiseOnlyImage = 64 * randn(480, 640);

% Add the noise image to the gray scale image.

noiseAddedImage = double(grayImage) + noiseOnlyImage;

% Compute the standard deviation of the three images.

sdGray = std(double(grayImage(:)))

sdNoiseOnly = std(noiseOnlyImage(:))

sdNoiseAdded = std(noiseAddedImage(:))

% Compute the means of the three images.

meanGray = mean(double(grayImage(:)))

meanNoiseOnly = mean(noiseOnlyImage(:))

meanNoiseAdded = mean(noiseAddedImage(:))

%======================================================

% Now plot everything.

subplot(2, 3, 1);

imshow(grayImage);

title('Original Image', 'FontSize', 20);

% Display its histogram

subplot(2, 3, 4);

imhist(grayImage);

grid on;

caption = sprintf('Histogram of Original Image\nMean = %.2f, SD = %.2f', meanGray, sdGray);

title(caption, 'FontSize', 20);

subplot(2, 3, 2);

imshow(noiseOnlyImage, []);

title('Noise-Only Image', 'FontSize', 20);

% Display its histogram

subplot(2, 3, 5);

histogram(noiseOnlyImage, 'EdgeColor', 'none');

grid on;

caption = sprintf('Histogram of Original Image\nMean = %.2f, SD = %.2f', meanNoiseOnly, sdNoiseOnly);

title(caption, 'FontSize', 20);

subplot(2, 3, 3);

imshow(noiseAddedImage, []);

title('Noise-Added Image', 'FontSize', 20);

% Display its histogram

subplot(2, 3, 6);

histogram(noiseAddedImage, 'EdgeColor', 'none');

grid on;

caption = sprintf('Histogram of Noise-Added Image\nMean = %.2f, SD = %.2f', meanNoiseAdded, sdNoiseAdded);

title(caption, 'FontSize', 20);

### More Answers (1)

lakpa tamang
on 13 Dec 2019

why is the mean not 0 in your code, yet he is asking for awgn?

##### 1 Comment

Image Analyst
on 13 Dec 2019

I used randn() to get 640*480 = 307,200 samples. Since these are RANDOM, the mean will not necessarily be exactly at zero. Imagine if you asked for only 4 values. Would you expect the value to be at exactly zero:

>> r=randn(1, 4)

r =

-0.740261712090743 -0.384816596337627 -0.581927647800475 1.27720101511378

>> mean(r)

ans =

-0.107451235278765

See, not exactly zero even though randn() draws from a standard normal distribution.

I don't know how important it was to him to have a mean of exactly zero versus having random numbers drawn from a distribution. I'd imagine having the random numbers is fine and the fact that they don't have a mean of exactly zero doesn't really matter to him. If it did, he could subtract the mean or something like that.

### See Also

### Categories

### Products

### Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!