Matlab Euler-Lagrange Library

Using this library one can derive differential equations for any dynamic systems and solve response of the system for a given conditions.
554 Downloads
Updated Wed, 14 Feb 2024 17:56:12 +0000

View Matlab Euler-Lagrange Library  on File Exchange

Matlab: Euler-Lagrange Library for Derving Equations of Dynamic Systems

Using the above library, one can derive differential equations for any dynamic systems and solve response of the system for a given conditions.

Functionality of the library has been illustrated by the following examples:

  1. Double Pendulum
  2. Spring Pendulum
  3. Pendulum with Spring-loaded support
  4. Double Pendulum with free support
  5. Double Spring Pendulum
  6. Coupled Pendulum
  7. Spring Pendulum with Rolling base inside a semicircle

Example 1: Double Pendulum

Problem Definition:

How to solve:

Just run the EVAL1.m to derive equations and solve intial condition problem:

Code Usage:

syms th1 th2  Dth1 Dth2 
syms l1 l2 m1 m2 J1 J2  g t 

%% Kinetic and Potential Energy
T1 = 1/2*J1*Dth1^2 + 1/2*m1*(l1/2*Dth1)^2;

Vc2_x = l1*Dth1*cos(th1) + l2/2*(Dth2)*cos(th2);
Vc2_y = l1*Dth1*sin(th1) + l2/2*(Dth2)*sin(th2);
Vc2 = sqrt(Vc2_x^2 + Vc2_y^2); 

T2 = 1/2*J2*(Dth2)^2 + 1/2*m2*Vc2^2;

T = T1 + T2;

V1 = m1*g*l1/2 * (1-cos(th1));
V2 = m2*g*(l1*(1-cos(th1)) + l2/2*(1-cos(th2)));
V = V1 + V2;

L = T - V;
%%
q  = [th1, th2];
Dq = [Dth1, Dth2];
tt = linspace(0,5,500);
Eq = LagrangeDynamicEqDeriver(L, q, Dq);
[SS, xx] = DynamicEqSolver(Eq, q, Dq, [l1 l2 m1 m2 J1 J2 g],...
                           [0.5, 0.5, 1, 5, 0.2, 0.5, 9.81], tt, [120,30,0,0]/180*pi);
Anlges of double pendulum: Animated Response:

Watch on YouTube:


Example 2: Spring Pendulum

Problem Definition:

How to solve:

Just run the EVAL2.m to derive equations and solve intial condition problem:

Code Usage:

syms th Dth x Dx
syms m l k g t 

%% Kinetic and Potential Energy
T = 1/2*m*(Dx^2 + (l + x)^2*Dth^2);
V = -m*g*(l+x)*cos(th) + 1/2*k*x^2;

L = T - V;
%% Derive Equations
q = [th, x]; Dq = [Dth, Dx];
Eq = LagrangeDynamicEqDeriver(L, q, Dq);

%% Solve Equations

tt = linspace(0,10,300);
[SS, xx] = DynamicEqSolver(Eq, q, Dq, [m l k g],...
                           [1 1 10 9.81], tt, [45/180*pi,0.1, 0, 0]);
Angle and length of spring pendulum: Animated Response:

Watch on YouTube:


Example 3: Pendulum with Spring-loaded support

Problem Definition:

How to solve:

Just run the EVAL3.m to derive equations and solve intial condition problem:

Code Usage:

syms th Dth x Dx
syms M m l k g 

%% Kinetic and Potential Energy
Vx2 = (Dx + l*Dth*cos(th))^2 + (l*Dth*sin(th))^2;
T   = 1/2*m*Vx2 + 1/2*M*Dx^2;

V = m*g*l*(1-cos(th)) + 1/2*k*x^2;

L = T - V;
%% Derive Equations
q = [th, x]; Dq = [Dth, Dx];
Eq = LagrangeDynamicEqDeriver(L, q, Dq);

%% Solve Equations

tt = linspace(0,10,200);
[SS, xx] = DynamicEqSolver(Eq, q, Dq, [M m l k g],...
                           [2, 1, 0.5, 50, 9.81], tt, [45/180*pi,0, 0, 0]);
Slider Position and Pendulum Anlge: Animated Response:

Watch on YouTube:


Example 4: Double Pendulum with free support

Problem Definition:

How to solve:

Just run the EVAL4.m to derive equations and solve intial condition problem:

Code Usage:

syms x th1 th2 Dx Dth1 Dth2 
syms M m1 m2 l1 l2 g

%% Kinetic and Potential Energy
v1x = l1*Dth1*cos(th1) + Dx;
v1y = l1*Dth1*sin(th1);

v2x = l1*Dth1*cos(th1) + l2*Dth2*cos(th2) + Dx;
v2y = l1*Dth1*sin(th1) + l2*Dth2*sin(th2);

v1t = v1x^2 + v1y^2; 
v2t = v2x^2 + v2y^2; 

T = 1/2*M*Dx^2 + 1/2*m1*v1t + 1/2*m2*v2t;

V1 = m1*g*l1*(1-cos(th1));
V2 = m2*g*(l1*(1-cos(th1))+l2*(1-cos(th2)));
V = V1 + V2;

L = T - V;
%%
q  = [x, th1, th2];
Dq = [Dx, Dth1, Dth2];
tt = linspace(0,25,500);
Eq = LagrangeDynamicEqDeriver(L, q, Dq);
[SS, xx] = DynamicEqSolver(Eq, q, Dq, [M m1 m2 l1 l2 g],...
                           [0.5, 0.5, 2, 1, 1, 9.81], tt, [0, pi/3, 2*pi/3, 0, 0, 0]);

Slider Position, Pendulum Anlges:

Slider Position, Pendulum Anlges: Animated Response:

Watch on YouTube:


Example 5: Double Spring Pendulum

Problem Definition:

How to solve:

Just run the EVAL5.m to derive equations and solve intial condition problem:

Code Usage:

syms x1 x2 th1 th2 Dx1 Dx2 Dth1 Dth2 
syms k1 k2 m1 m2 l1 l2 g 

%% Kinetic and Potential Energy

v1x = Dx1*sin(th1) + (l1 + x1)*Dth1*cos(th1);
v1y = Dx1*cos(th1) - (l1 + x1)*Dth1*sin(th1);

v2x = Dx1*sin(th1) + (l1 + x1)*Dth1*cos(th1) + Dx2*sin(th2) + (l2 + x2)*Dth2*cos(th2);
v2y = Dx1*cos(th1) - (l1 + x1)*Dth1*sin(th1) + Dx2*cos(th2) - (l2 + x2)*Dth2*sin(th2);

v1t = v1x^2 + v1y^2; 
v2t = v2x^2 + v2y^2; 

T = 1/2*m1*v1t + 1/2*m2*v2t;

V1 = -m1*g*((l1 + x1)*cos(th1)) + 1/2*k1*x1^2;
V2 = -m2*g*((l1 + x1)*cos(th1) + (l2 + x2)*cos(th2)) + 1/2*k2*x2^2;
V = V1 + V2;

L = T - V;
%%
q  = [x1, x2, th1, th2];
Dq = [Dx1, Dx2, Dth1, Dth2];
tt = linspace(0, 15, 500);
Eq = LagrangeDynamicEqDeriver(L, q, Dq);
[SS, xx] = DynamicEqSolver(Eq, q, Dq, [k1 k2 m1 m2 l1 l2 g],...
                           [20, 100, 1, 2, 1, 1, 9.81], tt, [0, 0, pi/3, 2*pi/3, 0, 0, 0, 0]);

Slider Position, Pendulum Anlges:

Angle and length of spring pendulum: Animated Response:

Watch on YouTube:


Example 6: Coupled Pendulum

Problem Definition:

How to solve:

Just run the EVAL6.m to derive equations and solve intial condition problem:

Code Usage:

syms th1 th2 Dth1 Dth2 
syms k m1 m2 l0 l1 l2 l3 g 

%% Kinetic and Potential Energy

v1x = l1*Dth1*cos(th1) ;
v1y = -l1*Dth1*sin(th1);

v2x = l2*Dth2*cos(th2) ;
v2y = -l2*Dth2*sin(th2);

v1t = v1x^2 + v1y^2; 
v2t = v2x^2 + v2y^2; 

T = 1/2*m1*v1t + 1/2*m2*v2t;

dXX = l0 + l2*sin(th2) - l1*sin(th1);
dYY = l1*cos(th1) - l2*cos(th2);
dx = (dXX^2 + dYY^2)^0.5 - l3;

V1 = -m1*g*(l1*cos(th1)) + 1/2*k*dx^2;
V2 = -m2*g*(l2*cos(th2));
V = V1 + V2;

L = T - V;
%%
q  = [th1, th2];
Dq = [Dth1, Dth2];
tt = linspace(0, 20, 500);
Eq = LagrangeDynamicEqDeriver(L, q, Dq);
l0n = 2; l1n = 1; l2n = 1.5; l3n = 2;
[SS, xx] = DynamicEqSolver(Eq, q, Dq, [k m1 m2 l0 l1 l2 l3 g],...
                           [20,1,3, l0n, l1n, l2n, l3n, 9.81], tt, [pi/6, pi/2.5, 0, 0]);

Slider Position, Pendulum Anlges:

Angles of coupled pendulum: Animated Response:

Example 7: Spring Pendulum with Rolling base inside a semicircle

Problem Definition:

How to solve:

Just run the EVAL7.m to derive equations and solve intial condition problem:

Code Usage:

syms th0 ths x Dth0 Dths Dx
syms R r M J m k l g 

%% Kinetic and Potential Energy

VoM = (R-r)*[cos(th0), sin(th0)];
Wd  = -(R-r)*Dth0/r;

Vm = (R-r)*Dth0*[cos(th0), sin(th0)] + (l+x)*Dths*[cos(ths), sin(ths)] + Dx*[sin(ths), -cos(ths)];

yM = -(R-r)*cos(th0);
ym = yM - (l+x)*cos(ths);

T = 1/2*M*(VoM*VoM.') + 1/2*m*(Vm*Vm.') + 1/2*J*Wd^2;

V = M*g*yM + m*g*ym + 1/2*k*x^2;

L = T - V;
%%
q  = [th0, ths, x];
Dq = [Dth0, Dths, Dx];
tt = linspace(0, 20, 500);
Eq = LagrangeDynamicEqDeriver(L, q, Dq);
R0 = 5; r0 = 1; l0 = 2; 
[SS, xx] = DynamicEqSolver(Eq, q, Dq, [R r M J m k l g],...
                           [R0, r0, 1, 2, 3, 30, l0, 9.81], tt, [pi/3, pi/2, 0, 0, 0, 0]);

Slider Position, Pendulum Anlges:

Angles of spring length: Animated Response:

Example 8: Coupled Triple Pendulums with Spring-loaded sliding support

Problem Definition:

Simulation Results:

The simulation results are based on the following Values:

% List of Parameter Values
Plist1 = [M1 m11 m12 m13 l11 l12 l13];
Pval1  = [4, 2, 1,1, 1, 1,1];
Plist2 = [M2 m21 m22 m23 l21 l22 l23];
Pval2  = [8, 2, 1,1, 1, 1,1];

Plist3 = [g l0 ls1 ls2 k1 k2];
Pval3  = [9.8, 1, 1,1, 100,50];

% Initial Conditions
x01  = [0,pi/6,2*pi/6,4*pi/5];
Dx01 = zeros(1,4);
x02  = [0.5,pi/4,2*pi/4,5*pi/8];
Dx02 = zeros(1,4);

Triple Pendulum #1 Position and Anlges:

Triple Pendulum #1 Position and Anlges: Animated Response:

Example 9: Spherical Pendulum (3D)

Problem Definition:

Simulation Results:

The simulation results are based on the following Values:

% List of Parameter Values
m0 = 1;
l0 = 2;
g0 = 9.81;

% Initial Conditions
th0  = 50;
phi0 = 0;
Dth0 = 0;
Dphi0 = 75;

Spherical Pendulum Anlges:

Spherical Pendulum Anlges: Animated Response:

Contact

Email: smtoraabi@ymail.com | mtmansourt@gmail.com

Mansour_Torabi Mansour_Torabi

Cite As

mansour torabi (2024). Matlab Euler-Lagrange Library (https://github.com/Mansourt/Matlab_Euler-Lagrange_Library_for_Deriving_Equations_of_Dynamic_Systems/releases/tag/v1.5), GitHub. Retrieved .

MATLAB Release Compatibility
Created with R2020b
Compatible with any release
Platform Compatibility
Windows macOS Linux

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
To view or report issues in this GitHub add-on, visit the GitHub Repository.
To view or report issues in this GitHub add-on, visit the GitHub Repository.