Navigation Toolbox

 

Navigation Toolbox

Design, simulate, and deploy algorithms for autonomous navigation

Navigation Toolbox provides algorithms and analysis tools for motion planning, simultaneous localization and mapping (SLAM), and inertial navigation. The toolbox includes customizable search and sampling-based path planners, as well as metrics for validating and comparing paths. You can create 2D and 3D map representations, generate maps using SLAM algorithms, and interactively visualize and debug map generation with the SLAM map builder app. The toolbox provides sensor models and algorithms for localization. You can simulate and visualize IMU, GPS, and wheel encoder sensor data, and tune fusion filters for multi-sensor pose estimation.

Reference examples are provided for automated driving, robotics, and consumer electronics applications. You can test your navigation algorithms by deploying them directly to hardware (with MATLAB Coder or Simulink Coder).

Create 2D and 3D occupancy grids.

Map Representation

Create 2D and 3D occupancy grids. Use multilayer maps to store generic data such as costs. Represent obstacles using capsule-based collision objects.​

Implement customized Simultaneous Localization and Mapping solutions.

Simultaneous Localization and Mapping (SLAM)

Implement customized multi-sensor SLAM solutions using robust pose graph optimization. Use interactive tools to review and modify loop closures.

Path Planning

Find paths through diverse environments using customizable sampling-based planners such as RRT and RRT*, or search-based planners such as A* and Hybrid A*.

Model and tune parameters with sensor modeling.

Sensor Modeling

Model and tune parameters for various sensors such as IMU, GPS, GNSS, wheel encoders, and range finders. Visualize sensor orientation, velocity, trajectories, and measurements.

Multisensor Pose Estimation

Localize ground and aerial vehicles using inertial sensors with or without GPS. Automatically tune filters to minimize pose estimation error.

Navigation in Dynamic Environments

Plan local trajectories around a global path while avoiding moving obstacles. Follow the planned path or trajectories using Control algorithm.

musashi-seimitsu-customer-case-study

“Using MATLAB and Simulink, we designed a prototype for the motion controller and tested it on the hardware within a month. The localization algorithm was evaluated and challenges were clarified by performing simulations.”

Get a Free Trial

30 days of exploration at your fingertips.


Ready to Buy?

Get pricing information and explore related products.

Are You a Student?

Your school may already provide access to MATLAB, Simulink, and add-on products through a campus-wide license.