Deploy YOLOv2 to an NVIDIA Jetson
From the series: Perception
In this video, Connell D’Souza joins Neha Goel to demonstrate how to deploy a deep neural network to an NVIDIA® embedded GPU using GPU Coder™ and the GPU Coder support package for NVIDIA GPUs. The example discussed in this video is deploying a multiclass YOLOv2 neural network to an NVIDIA Jetson® TX1.
Connell first introduces the different MathWorks and third-party prerequisite libraries needed to generate and deploy CUDA code to an NVIDIA GPU and demonstrates how to verify the setup using the coder.checkGpuInstall app.
Next, Connell will discuss preparing MATLAB code for GPU code generation. He demonstrate how to generate and deploy an executable to an NVIDIA Jetson TX1 to sample video frames from a camera connected to the Jetson and detect objects of interest in the video frames.
Resources:
Published: 3 Jan 2020
Sélectionner un site web
Choisissez un site web pour accéder au contenu traduit dans votre langue (lorsqu'il est disponible) et voir les événements et les offres locales. D’après votre position, nous vous recommandons de sélectionner la région suivante : .
Vous pouvez également sélectionner un site web dans la liste suivante :
Comment optimiser les performances du site
Pour optimiser les performances du site, sélectionnez la région Chine (en chinois ou en anglais). Les sites de MathWorks pour les autres pays ne sont pas optimisés pour les visites provenant de votre région.
Amériques
- América Latina (Español)
- Canada (English)
- United States (English)
Europe
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)
Asie-Pacifique
- Australia (English)
- India (English)
- New Zealand (English)
- 中国
- 日本Japanese (日本語)
- 한국Korean (한국어)