# rod2quat

Convert Euler-Rodrigues vector to quaternion

## Description

example

quat=rod2quat(R) function calculates the quaternion, quat, for a given Euler-Rodrigues (also known as Rodrigues) vector, R.

Aerospace Toolbox uses quaternions that are defined using the scalar-first convention.

## Examples

collapse all

Determine the quaternion from Rodrigues vector.

r = [.1 .2 -.1];
q = rod2quat(r)
q =

0.9713    0.0971    0.1943   -0.0971

## Input Arguments

collapse all

M-by-1 array of Rodrigues vectors.

Data Types: double

## Output Arguments

collapse all

M-by-4 matrix of M quaternions. quat has its scalar number as the first column.

## Algorithms

An Euler-Rodrigues vector $\stackrel{⇀}{b}$ represents a rotation by integrating a direction cosine of a rotation axis with the tangent of half the rotation angle as follows:

$\stackrel{\to }{b}=\left[\begin{array}{ccc}{b}_{x}& {b}_{y}& {b}_{z}\end{array}\right]$

where:

$\begin{array}{l}{b}_{x}=\mathrm{tan}\left(\frac{1}{2}\theta \right){s}_{x},\\ {b}_{y}=\mathrm{tan}\left(\frac{1}{2}\theta \right){s}_{y},\\ {b}_{z}=\mathrm{tan}\left(\frac{1}{2}\theta \right){s}_{z}\end{array}$

are the Rodrigues parameters. Vector $\stackrel{⇀}{s}$ represents a unit vector around which the rotation is performed. Due to the tangent, the rotation vector is indeterminate when the rotation angle equals ±pi radians or ±180 deg. Values can be negative or positive.

## References

[1] Dai, J.S. "Euler-Rodrigues formula variations, quaternion conjugation and intrinsic connections." Mechanism and Machine Theory, 92, 144-152. Elsevier, 2015.

## Version History

Introduced in R2017a