getUnpaddedOutputData
Class: dlhdl.Processor
Namespace: dlhdl
Description
        unpaddedOutput = getUnpaddedOutputData(hProc,paddedData,numofFrames,activationLayer)paddedData, for the
        specified number of frames numofFrames , and activation layer of the
        network in the deep learning processor hProc. 
Input Arguments
Deep learning processor, specified as a dlhdl.Processor
            object.
Padded output data of the deep learning processor IP core, specified as a numeric m-by-1 column vector. The padded output contains padded zeros depending upon the convolution thread number value.
Number of frames of data, specified as a scalar integer. The number of frames is typically the same value as the last dimension of the padded output data.
Activation layer, specified as a character vector. The layer name must correspond to the layer for which the padded output data is retrieved from the deep learning processor IP core.
Output Arguments
Output data with padding removed, returned as a numeric array. The size of the
            output data corresponds to the size of the output of the layer specified by
              activationLayer.
Examples
Retrieve the padded input data for a network with an input layer of size 10-by-10-by-5. The convolution thread number is nine and the expected padded input data should be an array of size 10-by-10-by-8.
Create a network with an input layer of size 10-by-10-by-5.
layers = [imageInputLayer([10,10,5],'Normalization','none') convolution2dLayer(3,5,'Padding','same') regressionLayer]; layers(2).Weights = ones(3,3,5,5); layers(2).Bias = ones(1,1,5); net = assembleNetwork(layers);
Create a processor configuration object and set the convolution thread number as nine.
hPC = dlhdl.ProcessorConfig; hPC.setModuleProperty('conv','ConvThreadNumber',9);
hPC = 
                    Processing Module "conv"
                            ModuleGeneration: 'on'
                          LRNBlockGeneration: 'off'
                 SegmentationBlockGeneration: 'on'
                            ConvThreadNumber: 9
                             InputMemorySize: [227 227 3]
                            OutputMemorySize: [227 227 3]
                            FeatureSizeLimit: 2048
                      Processing Module "fc"
                            ModuleGeneration: 'on'
                      SoftmaxBlockGeneration: 'off'
                              FCThreadNumber: 4
                             InputMemorySize: 25088
                            OutputMemorySize: 4096
                  Processing Module "custom"
                            ModuleGeneration: 'on'
                                     Sigmoid: 'off'
                                   TanhLayer: 'off'
                                    Addition: 'on'
                                   MishLayer: 'off'
                              Multiplication: 'on'
                                    Resize2D: 'off'
                                  SwishLayer: 'off'
                             InputMemorySize: 40
                            OutputMemorySize: 120
              Processor Top Level Properties
                              RunTimeControl: 'register'
                               RunTimeStatus: 'register'
                          InputStreamControl: 'register'
                         OutputStreamControl: 'register'
                                SetupControl: 'register'
                           ProcessorDataType: 'single'
                     System Level Properties
                              TargetPlatform: 'Xilinx Zynq UltraScale+ MPSoC ZCU102 Evaluation Kit'
                             TargetFrequency: 200
                               SynthesisTool: 'Xilinx Vivado'
                             ReferenceDesign: 'AXI-Stream DDR Memory Access : 3-AXIM'
                     SynthesisToolChipFamily: 'Zynq UltraScale+'
                     SynthesisToolDeviceName: 'xczu9eg-ffvb1156-2-e'
                    SynthesisToolPackageName: ''
                     SynthesisToolSpeedValue: ''Create a processor object and a random input array of size 10-by-10-by-5.
hProc = dlhdl.Processor(Network=net,ProcessorConfig=hPC); im = rand(10,10,5);
Retrieve the padded input data by using the
              getExpectedPaddedInputData method. The size of the
              output matrix is 10-by-10-by-8. Reshape output
            to an 800-by-1 matrix.
output = getExpectedPaddedInputData(hProc,im); paddedData = dnnfpga.format.convert3DInputToDDRVectorFormatConv4(output, 4);
Retrieve the unpadded output data by using getUnpaddedOutputData.
            The size of the unpadded output data corresponds to the size of the
              conv layer, which is 10-by-10-by-5.
outH = getUnpaddedOutputData(hProc,paddedData',1,'conv');Version History
Introduced in R2023b
MATLAB Command
You clicked a link that corresponds to this MATLAB command:
Run the command by entering it in the MATLAB Command Window. Web browsers do not support MATLAB commands.
Select a Web Site
Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: .
You can also select a web site from the following list
How to Get Best Site Performance
Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.
Americas
- América Latina (Español)
- Canada (English)
- United States (English)
Europe
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)