Asset Returns and Scenarios Using PortfolioMAD Object
How Stochastic Optimization Works
The MAD of a portfolio is mean-absolute deviation. For the definition of the MAD function, see Risk Proxy. Although analytic solutions for MAD exist for a few probability distributions, an alternative is to compute the expectation for MAD with samples from the probability distribution of asset returns. These samples are called scenarios and, given a collection of scenarios, the portfolio optimization problem becomes a stochastic optimization problem.
As a function of the portfolio weights, the MAD of the portfolio is a convex
non-smooth function (see Konno and Yamazaki [50] at Portfolio Optimization). The PortfolioMAD object computes MAD as this
nonlinear function which can be handled by the solver fmincon
Optimization Toolbox™. The nonlinear programming solver fmincon
has several algorithms that can be selected with the
setSolver
function, the two
algorithms that work best in practice are 'sqp'
and
'active-set'
.
There are reformulations of the MAD portfolio optimization problem (see Konno and
Yamazaki [50] at Portfolio Optimization) that result in a linear
programming problem, which can be solved either with standard linear programming
techniques or with stochastic programming solvers. The
PortfolioMAD
object, however, does not reformulate the
problem in such a manner. The PortfolioMAD
object computes the
MAD as a nonlinear function. The convexity of the MAD, as a function of the
portfolio weights and the dull edges when the number of scenarios is large, make the
MAD portfolio optimization problem tractable, in practice, for certain nonlinear
programming solvers, such as fmincon
from Optimization Toolbox. To learn more about the workflow when using
PortfolioMAD
objects, see PortfolioMAD Object Workflow.
What Are Scenarios?
Since mean absolute deviation portfolio optimization works with scenarios of asset returns to perform the optimization, several ways exist to specify and simulate scenarios. In many applications with MAD portfolio optimization, asset returns may have distinctly nonnormal probability distributions with either multiple modes, binning of returns, truncation of distributions, and so forth. In other applications, asset returns are modeled as the result of various simulation methods that might include Monte-Carlo simulation, quasi-random simulation, and so forth. Often, the underlying probability distribution for risk factors may be multivariate normal but the resultant transformations are sufficiently nonlinear to result in distinctively nonnormal asset returns.
For example, this occurs with bonds and derivatives. In the case of bonds with a nonzero probability of default, such scenarios would likely include asset returns that are −100% to indicate default and some values slightly greater than −100% to indicate recovery rates.
Although the PortfolioMAD
object has functions to simulate
multivariate normal scenarios from either data or moments (simulateNormalScenariosByData
and
simulateNormalScenariosByMoments
),
the usual approach is to specify scenarios directly from your own simulation
functions. These scenarios are entered directly as a matrix with a sample for all
assets across each row of the matrix and with samples for an asset down each column
of the matrix. The architecture of the MAD portfolio optimization tools references
the scenarios through a function handle so scenarios that have been set cannot be
accessed directly as a property of the PortfolioMAD
object.
Setting Scenarios Using the PortfolioMAD Function
Suppose that you have a matrix of scenarios in the
AssetScenarios
variable. The scenarios are set through the
PortfolioMAD
object
with:
m = [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0;
0.00408 0.0289 0.0204 0.0119;
0.00192 0.0204 0.0576 0.0336;
0 0.0119 0.0336 0.1225 ];
m = m/12;
C = C/12;
AssetScenarios = mvnrnd(m, C, 20000);
p = PortfolioMAD('Scenarios', AssetScenarios);
disp(p.NumAssets)
disp(p.NumScenarios)
4 20000
Notice that the PortfolioMAD
object determines and fixes the
number of assets in NumAssets
and the number of scenarios in
NumScenarios
based on the scenario’s matrix. You can change
the number of scenarios by calling the PortfolioMAD
object with a different
scenario matrix. However, once the NumAssets
property has been
set in the object, you cannot enter a scenario matrix with a different number of
assets. The getScenarios
function lets you
recover scenarios from a PortfolioMAD
object. You can also obtain
the mean and covariance of your scenarios using estimateScenarioMoments
.
Although not recommended for the casual user, an alternative way exists to recover
scenarios by working with the function handle that points to scenarios in the
PortfolioMAD
object. To access some or all the scenarios from
a PortfolioMAD
object, the hidden property
localScenarioHandle
is a function handle that points to a
function to obtain scenarios that have already been set. To get scenarios directly
from a PortfolioMAD
object p
,
use
scenarios = p.localScenarioHandle([], []);
startrow
to
endrow
,
usescenarios = p.localScenarioHandle(startrow, endrow);
1
≤ startrow
≤ endrow
≤
numScenarios
.Setting Scenarios Using the setScenarios
Function
You can also set scenarios using setScenarios
. For example, given
the mean and covariance of asset returns in the variables m
and
C
, the asset moment properties can be set:
m = [ 0.05; 0.1; 0.12; 0.18 ]; C = [ 0.0064 0.00408 0.00192 0; 0.00408 0.0289 0.0204 0.0119; 0.00192 0.0204 0.0576 0.0336; 0 0.0119 0.0336 0.1225 ]; m = m/12; C = C/12; AssetScenarios = mvnrnd(m, C, 20000); p = PortfolioMAD; p = setScenarios(p, AssetScenarios); disp(p.NumAssets) disp(p.NumScenarios)
4 20000
Estimating the Mean and Covariance of Scenarios
This example shows how to use estimateScenarioMoments
function to obtain estimates for the mean and covariance of scenarios in a PortfolioMAD
object.
m = [ 0.05; 0.1; 0.12; 0.18 ]; C = [ 0.0064 0.00408 0.00192 0; 0.00408 0.0289 0.0204 0.0119; 0.00192 0.0204 0.0576 0.0336; 0 0.0119 0.0336 0.1225 ]; m = m/12; C = C/12; AssetScenarios = mvnrnd(m, C, 20000); p = PortfolioMAD; p = setScenarios(p, AssetScenarios); [mean, covar] = estimateScenarioMoments(p)
mean = 4×1
0.0042
0.0082
0.0094
0.0147
covar = 4×4
0.0005 0.0003 0.0002 -0.0000
0.0003 0.0024 0.0017 0.0010
0.0002 0.0017 0.0048 0.0028
-0.0000 0.0010 0.0028 0.0100
Simulating Normal Scenarios
As a convenience, the two functions (simulateNormalScenariosByData
and
simulateNormalScenariosByMoments
)
exist to simulate scenarios from data or moments under an assumption that they are
distributed as multivariate normal random asset returns.
Simulating Normal Scenarios from Returns or Prices
This example shows how to use the simulateNormalScenariosByData
function with the PortfolioMAD
object to simulate multivariate normal scenarios when you are given either return or price data. Either returns or prices are stored as matrices with samples going down the rows and assets going across the columns. In addition, returns or prices can be stored in a table
or timetable
(see Simulating Normal Scenarios from Time Series Data).
To illustrate using simulateNormalScenariosByData
, generate random samples of 120 observations of asset returns for four assets from the mean and covariance of asset returns in the variables m
and C
with portsim
. The default behavior of portsim
creates simulated data with estimated mean and covariance identical to the input moments m
and C
. In addition to a return series created by portsim
in the variable X
, a price series is created in the variable Y
:
m = [ 0.0042; 0.0083; 0.01; 0.15 ]; C = [ 0.005333 0.00034 0.00016 0; 0.00034 0.002408 0.0017 0.000992; 0.00016 0.0017 0.0048 0.0028; 0 0.000992 0.0028 0.010208 ]; X = portsim(m', C, 120); Y = ret2tick(X);
Note that Portfolio optimization requires that you use total returns and not just price returns. So, "returns" should be total returns and "prices" should be total return prices.
Given asset returns and prices in variables X
and Y
from above, this sequence of code demonstrates equivalent ways to simulate multivariate normal scenarios for the PortfolioMAD
object. Assume a PortfolioMAD
object created in p that uses the asset returns in X
uses simulateNormalScenariosByData
:
p = PortfolioMAD; p = simulateNormalScenariosByData(p, X, 20000); [passetmean, passetcovar] = estimateScenarioMoments(p)
passetmean = 4×1
0.0042
0.0082
0.0094
0.1498
passetcovar = 4×4
0.0052 0.0003 0.0001 -0.0000
0.0003 0.0024 0.0017 0.0010
0.0001 0.0017 0.0048 0.0028
-0.0000 0.0010 0.0028 0.0100
The moments that you obtain from this simulation will likely differ from the moments listed here because the scenarios are random samples from the estimated multivariate normal probability distribution of the input returns X
.
The default behavior of simulateNormalScenariosByData
is to work with asset returns. If, instead, you have asset prices as in the variable Y
, simulateNormalScenariosByData
accepts a name-value pair argument name 'DataFormat'
with a corresponding value set to 'prices'
to indicate that the input to the function is in the form of asset prices and not returns (the default value for the 'DataFormat'
argument is 'returns'
). This example simulates scenarios with the asset price data in Y
for the PortfolioMAD
object q
:
p = PortfolioMAD; p = simulateNormalScenariosByData(p, Y, 20000, 'dataformat', 'prices'); [passetmean, passetcovar] = estimateScenarioMoments(p)
passetmean = 4×1
0.0046
0.0086
0.0097
0.1501
passetcovar = 4×4
0.0054 0.0003 0.0002 0.0000
0.0003 0.0024 0.0017 0.0010
0.0002 0.0017 0.0048 0.0029
0.0000 0.0010 0.0029 0.0103
Simulating Normal Scenarios with Missing Data
This example shows how to simulate normal scenarios when you have missing data indicated by NaN
values in your return or price data. Although Multivariate Normal Regression goes into detail about regression with missing data, the simulateNormalScenariosByData
function has a name-value pair argument name 'MissingData'
that indicates with a Boolean value whether to use the missing data capabilities of Financial Toolbox™. The default value for 'MissingData'
is false
which removes all samples with NaN
values. If, however, 'MissingData'
is set to true
, simulateNormalScenariosByData
uses the ECM algorithm to estimate asset moments. The following code shows how this works on price data with missing values.
m = [ 0.0042; 0.0083; 0.01; 0.15 ]; C = [ 0.005333 0.00034 0.00016 0; 0.00034 0.002408 0.0017 0.000992; 0.00016 0.0017 0.0048 0.0028; 0 0.000992 0.0028 0.010208 ]; X = portsim(m', C, 120); Y = ret2tick(X); Y(1:20,1) = NaN; Y(1:12,4) = NaN;
Notice that the prices above in Y
have missing values in the first and fourth series.
p = PortfolioMAD; p = simulateNormalScenariosByData(p, Y, 20000, 'dataformat', 'prices'); q = PortfolioMAD; q = simulateNormalScenariosByData(q, Y, 20000, 'dataformat', 'prices', 'missingdata', true); [passetmean, passetcovar] = estimateScenarioMoments(p)
passetmean = 4×1
0.0014
0.0095
0.0162
0.1587
passetcovar = 4×4
0.0050 0.0002 -0.0002 0.0001
0.0002 0.0025 0.0014 0.0006
-0.0002 0.0014 0.0038 0.0018
0.0001 0.0006 0.0018 0.0087
[qassetmean, qassetcovar] = estimateScenarioMoments(q)
qassetmean = 4×1
0.0024
0.0086
0.0096
0.1544
qassetcovar = 4×4
0.0067 0.0003 -0.0003 0.0002
0.0003 0.0032 0.0022 0.0010
-0.0003 0.0022 0.0064 0.0027
0.0002 0.0010 0.0027 0.0119
The first PortfolioMAD
object, p
, contains scenarios obtained from price data in Y
where NaN
values are discarded and the second PortfolioCVaR
object, q
, contains scenarios obtained from price data in Y
that accommodate missing values. Each time you run this example, you get different estimates for the moments in p
and q
.
Simulating Normal Scenarios from Time Series Data
This example shows how the simulateNormalScenariosByData
function accepts asset returns or prices stored in a table or timetable. The simulateNormalScenariosByData
function implicitly works with matrices of data or data in a table
or timetable
object using the same rules for whether the data are returns or prices.
To illustrate, use array2timetable
to create a timetable for 14 assets from CAPMuniverse
and the use the timetable to simulate scenarios for PortfolioMAD
.
load CAPMuniverse time = datetime(Dates,'ConvertFrom','datenum'); stockTT = array2timetable(Data,'RowTimes',time, 'VariableNames', Assets); stockTT.Properties
ans = TimetableProperties with properties: Description: '' UserData: [] DimensionNames: {'Time' 'Variables'} VariableNames: {'AAPL' 'AMZN' 'CSCO' 'DELL' 'EBAY' 'GOOG' 'HPQ' 'IBM' 'INTC' 'MSFT' 'ORCL' 'YHOO' 'MARKET' 'CASH'} VariableTypes: ["double" "double" "double" "double" "double" "double" "double" "double" "double" "double" "double" "double" "double" "double"] VariableDescriptions: {} VariableUnits: {} VariableContinuity: [] RowTimes: [1471×1 datetime] StartTime: 03-Jan-2000 SampleRate: NaN TimeStep: NaN Events: [] CustomProperties: No custom properties are set. Use addprop and rmprop to modify CustomProperties.
% Notice that GOOG has missing data, because it was not listed before Aug 2004
head(stockTT, 5)
Time AAPL AMZN CSCO DELL EBAY GOOG HPQ IBM INTC MSFT ORCL YHOO MARKET CASH ___________ _________ _________ _________ _________ _________ ____ _________ _________ _________ _________ _________ _________ _________ __________ 03-Jan-2000 0.088805 0.1742 0.008775 -0.002353 0.12829 NaN 0.03244 0.075368 0.05698 -0.001627 0.054078 0.097784 -0.012143 0.00020522 04-Jan-2000 -0.084331 -0.08324 -0.05608 -0.08353 -0.093805 NaN -0.075613 -0.033966 -0.046667 -0.033802 -0.0883 -0.067368 -0.03166 0.00020339 05-Jan-2000 0.014634 -0.14877 -0.003039 0.070984 0.066875 NaN -0.006356 0.03516 0.008199 0.010567 -0.052837 -0.073363 0.011443 0.00020376 06-Jan-2000 -0.086538 -0.060072 -0.016619 -0.038847 -0.012302 NaN -0.063688 -0.017241 -0.05824 -0.033477 -0.058824 -0.10307 0.011743 0.00020266 07-Jan-2000 0.047368 0.061013 0.0587 -0.037708 -0.000964 NaN 0.028416 -0.004386 0.04127 0.013091 0.076771 0.10609 0.02393 0.00020157
Use the 'MissingData'
option offered by PortfolioMAD
to account for the missing data.
p = PortfolioMAD;
p = simulateNormalScenariosByData(p, stockTT, 20000 ,'missingdata',true);
[passetmean, passetcovar] = estimateScenarioMoments(p)
passetmean = 14×1
0.0012
0.0007
-0.0004
-0.0000
0.0016
0.0043
-0.0000
0.0001
0.0001
-0.0003
0.0001
0.0003
0.0001
0.0001
⋮
passetcovar = 14×14
0.0013 0.0005 0.0006 0.0005 0.0005 0.0003 0.0005 0.0003 0.0006 0.0004 0.0005 0.0006 0.0002 -0.0000
0.0005 0.0024 0.0007 0.0005 0.0010 0.0005 0.0005 0.0003 0.0006 0.0004 0.0006 0.0011 0.0002 -0.0000
0.0006 0.0007 0.0013 0.0006 0.0007 0.0004 0.0006 0.0004 0.0008 0.0005 0.0008 0.0008 0.0002 -0.0000
0.0005 0.0005 0.0006 0.0009 0.0006 0.0002 0.0005 0.0003 0.0006 0.0004 0.0005 0.0006 0.0002 -0.0000
0.0005 0.0010 0.0007 0.0006 0.0018 0.0007 0.0005 0.0003 0.0006 0.0005 0.0007 0.0011 0.0002 -0.0000
0.0003 0.0005 0.0004 0.0002 0.0007 0.0013 0.0002 0.0002 0.0002 0.0002 0.0003 0.0011 0.0001 -0.0000
0.0005 0.0005 0.0006 0.0005 0.0005 0.0002 0.0010 0.0003 0.0005 0.0003 0.0005 0.0006 0.0002 -0.0000
0.0003 0.0003 0.0004 0.0003 0.0003 0.0002 0.0003 0.0005 0.0004 0.0002 0.0004 0.0004 0.0002 0.0000
0.0006 0.0006 0.0008 0.0006 0.0006 0.0002 0.0005 0.0004 0.0011 0.0005 0.0007 0.0007 0.0002 -0.0000
0.0004 0.0004 0.0005 0.0004 0.0005 0.0002 0.0003 0.0002 0.0005 0.0006 0.0004 0.0005 0.0002 -0.0000
0.0005 0.0006 0.0008 0.0005 0.0007 0.0003 0.0005 0.0004 0.0007 0.0004 0.0014 0.0008 0.0002 -0.0000
0.0006 0.0011 0.0008 0.0006 0.0011 0.0011 0.0006 0.0004 0.0007 0.0005 0.0008 0.0020 0.0002 -0.0000
0.0002 0.0002 0.0002 0.0002 0.0002 0.0001 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0001 -0.0000
-0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 0.0000
⋮
Use the name-value input 'DataFormat'
to handle return or price data and 'MissingData'
to ignore or use samples with missing values. In addition, simulateNormalScenariosByData
extracts asset names or identifiers from a table
or timetable
if the argument 'GetAssetList'
is set to true
(the default value is false
). If the 'GetAssetList'
value is true
, the identifiers are used to set the AssetList
property of the PortfolioMAD
object. Thus, repeating the formation of the PortfolioMAD
object p
with the 'GetAssetList'
flag set to true
extracts the column names from the timetable
object:
p = simulateNormalScenariosByData(p, stockTT, 20000 ,'missingdata',true, 'GetAssetList', true); disp(p.AssetList)
{'AAPL'} {'AMZN'} {'CSCO'} {'DELL'} {'EBAY'} {'GOOG'} {'HPQ'} {'IBM'} {'INTC'} {'MSFT'} {'ORCL'} {'YHOO'} {'MARKET'} {'CASH'}
If you set the 'GetAssetList'
flag set to true
and your input data is in a matrix, simulateNormalScenariosByData
uses the default labeling scheme from setAssetList
as described in Setting Up a List of Asset Identifiers.
Simulating Normal Scenarios with Mean and Covariance
This example shows how to use the simulateNormalScenariosByMoments
function to simulate multivariate normal scenarios when given the mean and covariance of asset returns. The mean can be either a row or column vector and the covariance matrix must be a symmetric positive-semidefinite matrix. Various rules for scalar expansion apply.
To illustrate using simulateNormalScenariosByMoments
with a PortfolioMAD
object, start with moments in m
and C
and generate 20,000 scenarios.
m = [ 0.0042; 0.0083; 0.01; 0.15 ]; C = [ 0.005333 0.00034 0.00016 0; 0.00034 0.002408 0.0017 0.000992; 0.00016 0.0017 0.0048 0.0028; 0 0.000992 0.0028 0.010208 ]; p = PortfolioMAD; p = simulateNormalScenariosByMoments(p, m, C, 20000); [passetmean, passetcovar] = estimateScenarioMoments(p)
passetmean = 4×1
0.0042
0.0082
0.0094
0.1497
passetcovar = 4×4
0.0052 0.0003 0.0001 -0.0000
0.0003 0.0024 0.0017 0.0010
0.0001 0.0017 0.0048 0.0028
-0.0000 0.0010 0.0028 0.0100
simulateNormalScenariosByMoments
performs scalar expansion on arguments for the moments of asset returns. If NumAssets
has not already been set, a scalar argument is interpreted as a scalar with NumAssets
set to 1
. simulateNormalScenariosByMoments
provides an additional optional argument to specify the number of assets so that scalar expansion works with the correct number of assets. In addition, if either a scalar or vector is input for the covariance of asset returns, a diagonal matrix is formed such that a scalar expands along the diagonal and a vector becomes the diagonal.
See Also
PortfolioMAD
| setCosts
| setScenarios
| simulateNormalScenariosByMoments
| simulateNormalScenariosByData
Topics
- Working with a Riskless Asset
- Working with Transaction Costs
- Creating the PortfolioMAD Object
- Working with MAD Portfolio Constraints Using Defaults
- Validate the MAD Portfolio Problem
- Estimate Efficient Portfolios Along the Entire Frontier for PortfolioMAD Object
- Estimate Efficient Frontiers for PortfolioMAD Object
- PortfolioMAD Object
- Portfolio Optimization Theory
- PortfolioMAD Object Workflow