ZeroCouponInflationFloor
Description
Create and price a ZeroCouponInflationFloor instrument
object for one or more Zero-Coupon Inflation Floor instruments using this
workflow:
Use
fininstrumentto create aZeroCouponInflationFloorinstrument object for one or more Zero-Coupon Inflation Floor instruments.Use
finmodelto specify aJarrowYildirimmodel object for theZeroCouponInflationFloorinstrument object.Use
ratecurveto specify aNominalCurveinterest-rate model for theZeroCouponInflationFloorinstrument object.Use
ratecurveto specify aRealCurveinterest-rate model for theZeroCouponInflationFloorinstrument object.Use
finpricerto specify aJarrowYildirimpricing method for one or moreZeroCouponInflationFloorinstruments.
For more information on this workflow, see Get Started with Workflows Using Object-Based Framework for Pricing Financial Instruments.
For more information on the available models and pricing methods for a
ZeroCouponInflationFloor instrument, see Choose Instruments, Models, and Pricers.
Creation
Syntax
Description
creates a ZCInflationFloor = fininstrument(InstrumentType,Maturity=maturity_date,Notional=notional_value,Strike=strike_value)ZeroCouponInflationFloor object for one or more
Zero-Coupon Inflation Floor instruments by specifying
InstrumentType and sets the properties for the required name-value arguments
Maturity, Notional, and
Strike.
sets optional properties using name-value arguments in addition to the
required arguments in the previous syntax. For example,
ZCInflationFloor = fininstrument(___,Name=Value)ZCInflationFloor =
fininstrument("ZeroCouponInflationFloor",Maturity=datetime(2033,10,1),Notional=1000,Strike=0.05,Basis=4)
creates a ZeroCouponInflationFloor instrument with a day
count basis of 4. You can specify multiple name-value
arguments, in any order.
Input Arguments
Name-Value Arguments
Output Arguments
Properties
Examples
More About
Algorithms
To price a zero coupon inflation-indexed floor using a JarrowYildirim and a
JarrowYildirim pricing method:
where:
N is the notional value.
k is the fixed annual inflation rate cap or floor strike.
K = 1 + k is one plus the cap or floor strike.
M is the maturity in years.
TM is the maturity date.
I(t) is the inflation index at t.
I0 is the issue index.
is the standard normal cumulative distribution.
is the zero coupon price (where n is nominal and r is real).
is the nominal rate volatility (positive constant).
is the real rate volatility (positive constant).
is the inflation index volatility (positive constant).
is the real rate and inflation index correlation.
is the nominal rate and inflation index correlation.
is the nominal rate and real rate correlation.
, are the positive constants.
References
[1] Jarrow, R. and Yildirim, Y. "Pricing Treasury Inflation Protected Securities and Related Derivatives using an HJM Model." Journal of Financial and Quantitative Analysis. Vol. 38, 2003.
[2] Kerkhof, J. "Inflation Derivatives Explained: Markets, Products, and Pricing." Fixed Income Quantitative Research, Lehman Brothers, July 2005.
[3] Mercurio, F. "Pricing Inflation-Indexed Derivatives." Quantitative Finance, Vol. 5, Issue 3, pp. 289–302, 2005.
Version History
Introduced in R2023b