Documentation

minus, -

Description

example

C = A - B subtracts array B from array A by subtracting corresponding elements. The sizes of A and B must be the same or be compatible.

If the sizes of A and B are compatible, then the two arrays implicitly expand to match each other. For example, if A or B is a scalar, then the scalar is combined with each element of the other array. Also, vectors with different orientations (one row vector and one column vector) implicitly expand to form a matrix.

C = minus(A,B) is an alternate way to execute A - B, but is rarely used. It enables operator overloading for classes.

Examples

collapse all

Create an array, A, and subtract a scalar value from it.

A = [2 1; 3 5];
C = A - 2
C = 2×2

0    -1
1     3

The scalar is subtracted from each entry of A.

Create two arrays, A and B, and subtract the second, B, from the first, A.

A = [1 0; 2 4];
B = [5 9; 2 1];
C = A - B
C = 2×2

-4    -9
0     3

The elements of B are subtracted from the corresponding elements of A.

Use the syntax -C to negate the elements of C.

-C
ans = 2×2

4     9
0    -3

Create a 1-by-2 row vector and 3-by-1 column vector and subtract them.

a = 1:2;
b = (1:3)';
a - b
ans = 3×2

0     1
-1     0
-2    -1

The result is a 3-by-2 matrix, where each (i,j) element in the matrix is equal to a(j) - b(i):

$\mathit{a}=\left[{\mathit{a}}_{1}\text{\hspace{0.17em}}{\mathit{a}}_{2}\right],\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\mathit{b}=\left[\begin{array}{c}{\mathit{b}}_{1}\\ {\mathit{b}}_{2}\\ {\mathit{b}}_{3}\end{array}\right],\text{\hspace{0.17em}\hspace{0.17em}\hspace{0.17em}\hspace{0.17em}\hspace{0.17em}\hspace{0.17em}\hspace{0.17em}\hspace{0.17em}\hspace{0.17em}\hspace{0.17em}}\text{\hspace{0.17em}}\mathit{a}-\text{\hspace{0.17em}}\mathit{b}=\left[\begin{array}{cc}{\mathit{a}}_{1}-{\mathit{b}}_{1}& {\mathit{a}}_{2}-{\mathit{b}}_{1}\\ {\mathit{a}}_{1}-{\mathit{b}}_{2}& {\mathit{a}}_{2}-{\mathit{b}}_{2}\\ {\mathit{a}}_{1}-{\mathit{b}}_{3}& {\mathit{a}}_{2}-{\mathit{b}}_{3}\end{array}\right].$

Create a matrix, A. Scale the elements in each column by subtracting the mean.

A = [1 9 3; 2 7 8]
A = 2×3

1     9     3
2     7     8

A - mean(A)
ans = 2×3

-0.5000    1.0000   -2.5000
0.5000   -1.0000    2.5000

Input Arguments

collapse all

Operands, specified as scalars, vectors, matrices, or multidimensional arrays. Numeric inputs A and B must either be the same size or have sizes that are compatible (for example, A is an M-by-N matrix and B is a scalar or 1-by-N row vector). For more information, see Compatible Array Sizes for Basic Operations.

• Operands with an integer data type cannot be complex.

• Datetime, duration, and calendar duration arrays must be the same size unless one is a scalar.

• If one input is a datetime array, duration array, or calendar duration array, then numeric values in the other input are treated as a number of 24-hour days.

• If one input is a string array, then the other input can be a numeric, logical, character, string, or cell array.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 | logical | char | datetime | duration | calendarDuration
Complex Number Support: Yes

Compatibility Considerations

expand all

Behavior changed in R2016b