Main Content

interpolateElectricField

Interpolate electric field in electrostatic result at arbitrary spatial locations

    Description

    example

    Eintrp = interpolateElectricField(electrostaticresults,xq,yq) returns the interpolated electric field values at the 2-D points specified in xq and yq.

    example

    Eintrp = interpolateElectricField(electrostaticresults,xq,yq,zq) uses 3-D points specified in xq, yq, and zq.

    example

    Eintrp = interpolateElectricField(electrostaticresults,querypoints) returns the interpolated electric field values at the points specified in querypoints.

    Examples

    collapse all

    Create an electromagnetic model for electrostatic analysis.

    emagmodel = createpde('electromagnetic','electrostatic');

    Create a square geometry and include it in the model. Plot the geometry with the edge labels.

    R1 = [3,4,-1,1,1,-1,1,1,-1,-1]';
    g = decsg(R1,'R1',('R1')');
    geometryFromEdges(emagmodel,g);
    pdegplot(emagmodel,'EdgeLabels','on')
    xlim([-1.5 1.5])
    axis equal

    Figure contains an axes object. The axes object contains 5 objects of type line, text.

    Specify the vacuum permittivity in the SI system of units.

    emagmodel.VacuumPermittivity = 8.8541878128E-12;

    Specify the relative permittivity of the material.

    electromagneticProperties(emagmodel,'RelativePermittivity',1);

    Apply the voltage boundary conditions on the edges of the square.

    electromagneticBC(emagmodel,'Voltage',0,'Edge',[1 3]);
    electromagneticBC(emagmodel,'Voltage',1000,'Edge',[2 4]);

    Specify the charge density for the entire geometry.

    electromagneticSource(emagmodel,'ChargeDensity',5E-9);

    Generate the mesh.

    generateMesh(emagmodel);

    Solve the model and plot the electric field.

    R = solve(emagmodel);
    pdeplot(emagmodel,'FlowData',[R.ElectricField.Ex ...
                                  R.ElectricField.Ey])
    axis equal

    Figure contains an axes object. The axes object contains an object of type quiver.

    Interpolate the resulting electric field to a grid covering the central portion of the geometry, for x and y from -0.5 to 0.5.

    v = linspace(-0.5,0.5,51);
    [X,Y] = meshgrid(v);
    
    Eintrp = interpolateElectricField(R,X,Y)
    Eintrp = 
      FEStruct with properties:
    
        Ex: [2601x1 double]
        Ey: [2601x1 double]
    
    

    Reshape Eintrp.Ex and Eintrp.Ey and plot the resulting electric field.

    EintrpX = reshape(Eintrp.Ex,size(X));
    EintrpY = reshape(Eintrp.Ey,size(Y));
    
    figure
    quiver(X,Y,EintrpX,EintrpY,'Color','red')

    Figure contains an axes object. The axes object contains an object of type quiver.

    Alternatively, you can specify the grid by using a matrix of query points.

    querypoints = [X(:),Y(:)]';
    Eintrp = interpolateElectricField(R,querypoints);

    Create an electromagnetic model for electrostatic analysis.

    emagmodel = createpde('electromagnetic','electrostatic');

    Import and plot the geometry representing a plate with a hole.

    importGeometry(emagmodel,'PlateHoleSolid.stl');
    pdegplot(emagmodel,'FaceLabels','on','FaceAlpha',0.3)

    Figure contains an axes object. The axes object contains 3 objects of type quiver, patch, line.

    Specify the vacuum permittivity in the SI system of units.

    emagmodel.VacuumPermittivity = 8.8541878128E-12;

    Specify the relative permittivity of the material.

    electromagneticProperties(emagmodel,'RelativePermittivity',1);

    Specify the charge density for the entire geometry.

    electromagneticSource(emagmodel,'ChargeDensity',5E-9);

    Apply the voltage boundary conditions on the side faces and the face bordering the hole.

    electromagneticBC(emagmodel,'Voltage',0,'Face',3:6);
    electromagneticBC(emagmodel,'Voltage',1000,'Face',7);

    Generate the mesh.

    generateMesh(emagmodel);

    Solve the model.

    R = solve(emagmodel)
    R = 
      ElectrostaticResults with properties:
    
          ElectricPotential: [4359x1 double]
              ElectricField: [1x1 FEStruct]
        ElectricFluxDensity: [1x1 FEStruct]
                       Mesh: [1x1 FEMesh]
    
    

    Plot the electric field.

    pdeplot3D(emagmodel,'FlowData',[R.ElectricField.Ex ...
                                    R.ElectricField.Ey ...
                                    R.ElectricField.Ez])

    Interpolate the resulting electric field to a grid covering the central portion of the geometry, for x, y, and z.

    x = linspace(3,7,7);
    y = linspace(0,1,7);
    z = linspace(8,12,7);
    [X,Y,Z] = meshgrid(x,y,z);
    
    Eintrp = interpolateElectricField(R,X,Y,Z)
    Eintrp = 
      FEStruct with properties:
    
        Ex: [343x1 double]
        Ey: [343x1 double]
        Ez: [343x1 double]
    
    

    Reshape Eintrp.Ex, Eintrp.Ey, and Eintrp.Ez.

    EintrpX = reshape(Eintrp.Ex,size(X));
    EintrpY = reshape(Eintrp.Ey,size(Y));
    EintrpZ = reshape(Eintrp.Ez,size(Z));

    Plot the resulting electric field.

    figure
    quiver3(X,Y,Z,EintrpX,EintrpY,EintrpZ,'Color','red')
    view([10 10])

    Figure contains an axes object. The axes object contains an object of type quiver.

    Input Arguments

    collapse all

    Solution of an electrostatic problem, specified as an ElectrostaticResults object. Create electrostaticresults using the solve function.

    Example: electrostaticresults = solve(emagmodel)

    x-coordinate query points, specified as a real array. interpolateElectricField evaluates the electric field at the 2-D coordinate points [xq(i) yq(i)] or at the 3-D coordinate points [xq(i) yq(i) zq(i)] for every i. Because of this, xq, yq, and (if present) zq must have the same number of entries.

    interpolateElectricField converts the query points to column vectors xq(:), yq(:), and (if present) zq(:). It returns electric field values as a column vector of the same size. To ensure that the dimensions of the returned solution are consistent with the dimensions of the original query points, use reshape. For example, use EintrpX = reshape(Eintrp.Ex,size(xq)).

    Example: xq = [0.5 0.5 0.75 0.75]

    Data Types: double

    y-coordinate query points, specified as a real array. interpolateElectricField evaluates the electric field at the 2-D coordinate points [xq(i) yq(i)] or at the 3-D coordinate points [xq(i),yq(i),zq(i)] for every i. Because of this, xq, yq, and (if present) zq must have the same number of entries.

    interpolateElectricField converts the query points to column vectors xq(:), yq(:), and (if present) zq(:). It returns electric field values as a column vector of the same size. To ensure that the dimensions of the returned solution are consistent with the dimensions of the original query points, use reshape. For example, use EintrpY = reshape(Eintrp.Ey,size(yq)).

    Example: yq = [1 2 0 0.5]

    Data Types: double

    z-coordinate query points, specified as a real array. interpolateElectricField evaluates the electric field at the 3-D coordinate points [xq(i) yq(i) zq(i)]. Therefore, xq, yq, and zq must have the same number of entries.

    interpolateElectricField converts the query points to column vectors xq(:), yq(:), and zq(:). It returns electric field values as a column vector of the same size. To ensure that the dimensions of the returned solution are consistent with the dimensions of the original query points, use reshape. For example, use EintrpZ = reshape(Eintrp.Ez,size(zq)).

    Example: zq = [1 1 0 1.5]

    Data Types: double

    Query points, specified as a real matrix with either two rows for 2-D geometry or three rows for 3-D geometry. interpolateElectricField evaluates the electric field at the coordinate points querypoints(:,i) for every i, so each column of querypoints contains exactly one 2-D or 3-D query point.

    Example: For a 2-D geometry, querypoints = [0.5 0.5 0.75 0.75; 1 2 0 0.5]

    Data Types: double

    Output Arguments

    collapse all

    Electric field at query points, returned as an FEStruct object with the properties representing the spatial components of the electric field at the query points. For query points that are outside the geometry, Eintrp.Ex(i), Eintrp.Ey(i), and Eintrp.Ez(i) are NaN. Properties of an FEStruct object are read-only.

    Introduced in R2021a